RC25378 (WAT 1304-079) April 26, 2013
Computer Science

|BM Resear ch Report

VirtualWiresfor Live Migrating Virtual
Networ ks across Clouds

Dan Williams, Hani Jamjoom
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 208
Y orktown Heights, NY 10598
USA

Zhefu Jiang, Hakim Weather spoon
Cornell University
Ithaca, NY

——=—= Research Division
S S=E55= Almaden- Austin - Beijing - Cambridge - Haifa - India- T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on theinternet at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

VirtualWires for Live Migrating Virtual Networks Across ClI ouds

Dan Williams', Hani Jamjoorh, Zhefu Jiand, and Hakim Weatherspoén

TIBM T. J. Watson Research Center, Yorktown Heights, NY
*Cornell University, Ithaca, NY

Abstract spite recent advances in enabling hypervisor-level con-
trol across third-party clouds [36], networking remains a
challenge for cross-cloud live migration.

Current live migration techniques are limited within a
nlfayer 2 network in order to prevent VM IP addresses from
changing. Inside a single autonomous cloud data cen-

Despite significant advances in enabling live virtual ma-
chine (VM) migration within a virtualized—cloud—
infrastructure cross-cloudive migration remains an ad
hoc, complex process. To create a network environme

in which live migration can occur, clouds are beginningter network architectures (e.g., NetLord [25], VL2 [15]

to expose virtual networks as a service. Connectin : .
PC o . . .gand PortLand [26]) achieve scalable “virtual” layer 2 net-
managing and maintaining membership and routing in- Lo o
. . . . works that enable flexible intra-cloud migration. Across
formation for—possibly incompatible—virtual networks

as VMs migrate between clouds is non-trivial for both clouds, providers have begun to expose virtual network
cloud providers and cloud users. In this paper Weabstractions that can seamlessly connect to private data
presentVirtualWire, a system in which cloud providers centers. For example,. Amazpn s_\ﬁrtual Prlvgte Cloud
offer—instead of a virtual network abstraction—ean- (VPC) [1] lets users br|.ng their private or public IP ad-
nect/disconnecprimitive that is much easier to man- dresses to the cloud using an IPsec.tu_nneI. ,

age. VirtualWire offers cloud users a consistent method Unfortunate_ly, the focus on pfOV'P"”g a virtual net-
to create complex logical network topologies in which work abstraction does not automatically enable cross-

the virtual network fabric itself is able to be elastically cloud live migration. Today, cloud providers must man-
stretched or live migrated within or between clouds. 29¢ the assomat(_ed .CO“”‘?' logic that specmes_how pack-
Leveraging nested virtualization, we have implementeoets are routed _W'th'n a wrtua} ngtwork. _Prowders, for
and evaluated VirtualWire across third-party clouds, in_exak:n[()jle, mayllrlnpl_em_ent a dISti!-’tlle\)luted(;/ll;t_uaLSWItCh OIZ
cluding Amazon EC2, achieving cross-cloud live migra- €M°€ control logic into a software defined networ

tion of VMs and network components with as low as 1.4 s(SPN) controller. Even emerging virtual networking
of downtime wire format standards like VXLAN [23], STT [12],

and NVGRE [30] assume the existence of a provider-

managed control plane. In all cases, providers must
1 Introduction also track to which—of potentially many—virtual net-

work(s) each VM belongs. When VMs are migrated,

Live migration has become an integral part of cloud in-the corresponding virtual networks must be appropriately
frastructure design. To offer live migrati@s a service stretched or reconfigured.

cloud provider$ must enable VMs from other clouds Furthermore, for cross-cloud deployments, this

to live migrate to their data centers. Live migration is ,ovider complexity does not eliminate the cloud user’s
a hyperwsor-lev_el operation, requiring Coordln_atlon be-iask of network management. Especially during
tween the sending and receiving host machines. Depjgration—both live and offline—cloud users must keep

we distinguish between clougroviders and users ~ Cloud track of their wrtua! networks so that they can appropri-
providers manage the cloud, virtualized data center (drgazon Elas- ately stretch them into a new cloud. The number of vir-
tic Compute Cloud and Rackspace). Cloud providers alseseptin- tyal networks that a cloud user must manage can be large.
frastructure administrators in large private clouds. @lasers are the An enterprise application for example often uses mul-
consumers of the cloud infrastructure in the form of leasétsVThey . . N . !

tiple VLANS to isolate its various tiers. Moreover, each

do not have hypervisor or root privileges to the physicalasfructure) s
that powers the cloud. cloud may expose a slightly different network abstrac-

tion, which may lack consistent support for important EC2, achieving performance within $%f a native EC2
network protocols or middlebox configurations [9,17]. deployment.

Instead of a virtual network abstraction, we propose In summary, VirtualWire makes three main contribu-
that providers expose aonnectdisconnectprimitive tions:
from which cloud users can build virtual networks. To
this end, we present VirtualWire. VirtualWire is a sys-® a connect/disconnect primitive to enable virtual net-
tem that couples every virtual network interface (vNIC) Wworks within and across clouds without requiring
with a point-to-point network tunnel. vNICs belong to providers to manage a virtual network abstraction,

VMs that either implement servers or user-level networky - application of nested virtualization to extend the

components (e.g., routers, switches, middieboxes) sim- e virtual network across one or more third-party
ilar to VIOLIN [19]. Cloud users can construct com- . 5.ds and

plex virtual networks by connecting pairs of vNICs to-

gether. Connections between vNICs are maintained even @ demonstration of virtual network elasticity through

as VMs migrate, eliminating any need for reconfigura- live VM migrations of virtual servers and net-

tion inside guest VMs. work components between our local setup and Ama-
VirtualWire has two main advantages over provider- zon EC2.

supplied virtual network abstractions from a cross-cloud

migration perspective: The rest of this paper is organized as follows. Sec-

tion 2 provides context with respect to related work. Sec-

o Simplicity for Providers. With VirtualWire, the cloud tion 3 and Section 4 describe the design and implementa-
provider’s task is reduced from managing the Virtua|ti0n of VirtualWire, reSpectively. Section 5 evaluates-Vir
networks’ control plane to ensuring efficient delivery tualWire, including live VM migration between clouds;
of network traffic across paired virtual interfaces (asSection 6 concludes.
specified by the user). More importantly, it enables de-
centralized management of vNICs. As part of the VM
live migration process, the participating hosts (i.e., the2 Background and Related Work

sending and receiving hypervisors) only need to ad- . L . .
just the affected pair of vNIC tunnel destinations, ef- Live m|gr_at|_on [1.1’ 271 s a common hyperwso_r-levgl
fectively stretching the tunnel feature within a single virtualized environment. Live mi-

grationas a servicerequires the provider to expose an

e Consistency for Users. VirtualWire enables users to interface in which hypervisors can transfer VMs to other
completely define their virtual network. The cloud hypervisors on potentially different clouds. Using nested
user controls the protocols supported by the virtual netvirtualization [8,36], such an interface can be exposed on
work and how traffic flows through middleboxes. The today’s clouds. However, today’s live migration strate-
user specifies the peerings between different vNICs ofjies have stringent networking requirements. To enable
virtual network components—once—in a process tha@ VM to maintain its IP address, live migration is lim-
mimics the act of plugging networking cables into net- ited to a layer 2 network. In the context of related work,
work interface cards. The physical locations of all we highlight requirements for enabling cross-cloud live
network components and the details of the underlyingmigration that drive the design of VirtualWire.

physical network are irrelevant to the user; networkpata Center Architectures. Several virtual network-
components or servers can freely migrate without re4nq architectures are built with VM migration in mind.
configuration from the user. VL2 [15] and NetLord [25] create a virtual layer 2 net-
work abstraction that can scale to hundreds of thousands
of VMs, partially motivated by the perceived need for
flexibility in VM migration and assignment. Software

. ~defined networking (SDN) [16,22,24,28] is emerging, in
Leveraging the Xen-Blanket [36], we have deployed Vir- which a network-wide control platform can enable net-

tualwire on Amazon EC2 (a third-party cloud) as well works to adapt to the new challenges presented by live

as a private enterprise cloud environment. We have per- . ~. :
) o : migration. However, these architectures have focused
formed live VM migration from our private cloud to

Amazon EC2—with no changes to VMs or the network on a single provider or admlnlstranvg domalq. From
: . : a cross-cloud perspective, the underlying provider com-
topology—incurring as low as 1.4 s of downtime. We

) . . lexity in managing the virtual network does not reduce
also demonstrate that VirtualWire is flexible enough top y ging

support_ a 3-tier applicatiqn WiT[h rigid n_etwork address 2The overhead is introduced by the nested virtualizatiorerlay
constraints between multiple firewall middleboxes ontowhich was needed to enable hypervisor level controls on EC2.

To date, we have implemented VirtualWire in Xen [6]
to transparently intercept packets from virtual network
interfaces and tunnel them across the physical networ

the complexity perceived by the user, who must man- Physical Machine Physical Machine
age a virtual network across—potentially inconsistent—
abstractionsVirtualWire should simplify cloud providers

while offering users a consistent networking interface,

Server 1

Top-of-Rack

Virtual Network
/ Interface

Router Switch

| CLOUD USER

despite migration across clouds. — L
% "\\‘ \Endpoint

Stretching Across Clouds. Virtual Private Networks & SR EAY)

N Q | Endpoint, XY Endpoint
(VPNs) are commonly used to extend private networks z | Manager N Manager
into remote sites. CloudNet [37] relies on provider basec E Physical conmect \Physical Network

. . . onnector Interface
VPNs to connect data centers and implements optimiza 3 cavte /
tions to migrate VMs across the WAN. Similarly, Ama- © Physicl y Physical
. . WILCH WILC

zon VPC [1] allows users to pick their own IP addresses

within a subnet connected to a private network via a _ . _
VPN. VNET [32] examines extending a layer 2 network Figure 1: VirtualWire
to a remote environment by using tunnels to a proxy.

More recently, vCider [4] and VPN-Cubed [5] use simi- : L .
: . ort for the live migration of virtual network components
lar mechanisms to support layer 2 protocols in the clou . . - S
across clouds without needing explicit coordination be-

and even provide some control over the network topol- .
. . o . tween providers.

ogy, but require configuration in the guest operating sys-
tems. CloudSwitch [2] operates in an isolation layer that
avoids guest operating system configuration, but doe8 VirtualWire
not facilitate the implementation of flow policies in the
cloud. Unfortunately, the lack of support for network- This section describes the high-level design of Virtual-
ing features in the cloud, such as enforcing VLANs or Wire, and highlights how providing a connect/disconnect
middlebox interposition, continues to present significantprimitive from which users can implement their own vir-
migration challenges [9, 17]. Connecting clouds is nottual network results in low management overhead. We
enough.VirtualWire should support complex topologies also discuss live migration and challenges in building an
and low-level protocols across clouds. efficient virtual network on VirtualWire.

A virtual network in VirtualWire has a split architec-
ture by design, illustrated in Figure 1. The cloud user
is responsible for configuring theser layer made up of

Virtual Network Components in an Overlay. In order
to support complex topologies and low-level protocols,

overlays of virtual network components, such as VIO—Virtual network componentswhile using a simple API

LIN [19], have been proposed. VINI [7] applies some to attachconnectorsbetween the virtual network inter-

of the ideas of VIOLIN in a controlled, realistic setting .
faces (VNICs) on components. Connecters are optimized
to create a shared network testbed. Emulab [35] also al- S .
. . ; network tunnels that maintain the virtual network topol-

lows users to specify arbitrary network topologies that .

are emulated in software. In these svstems. the overOgy regardless of where virtual network components and
. . ' . ysiems, e OVeIze vers are located; the provider implements the connec-

lay is largely static and not designed for live migration.

Y 2T tor abstraction in therovider layer
Migration is disconnected from the management of over- e Y

lays and therefore constrained by how the overlay is con-
figured. VirtualWire should integrate migration into a 3.1 User Layer: Network Components

virtual network so that the network can automatically Similar to VIOLIN [19], in VirtualWire, users run

stretch to anywhere a VM migrates. and configurevirtual network componentswhich are
Migrating Virtual Networks. Especially for large, VMs containing configurable software implementations
multi-tier deployments (e.g., enterprise applications),of switches, routers, and middleboxes. Many soft-
live migration of network components with VMs as an ware implementations of network components exist (e.g.,
ensemble is necessary [20]. To this end, LIME leverage®©pen vSwitch [28], Click router [21], and XORP [18]).
SDN techniques and requires infrastructure providersEven commercial vendors have started providing soft-
to implement support for migration in the SDN con- ware equivalents of their physical network components.
troller. Individual virtual network components, particu- For example, Cisco has released the Nexus 1000V se-
larly routers, have been migrated in VROOM [34]. More ries of production virtual switches [10]. Although not
generally, a case has been made for network infrastruggroduction, NetSim [3] contains software implementa-
ture providers to be completely decoupled from servicetions of 42 routers and 6 switches. Similarly, the Olive
providers [14]. However, these architectures focus onJUNOS implementation for training on Juniper devices
a single cloud providenirtualWire should provide sup- runs on FreeBSD.

Outer Ethernet
Header

J, VM sends packet

- 1 <IP, UDP port> could !
Endpoint intercepts packet 3 be address of endpoint :

or extender 1

1P

Version IHL ‘ TOS Total Length

outer

Tunnel to <IP, UDP port, connector ID>

Identification Flags Fragment Offset ‘

Time to Live ‘ Protocol Header Checksum

Outer Source Address

Outer Destination Address
oo NO Encapsulate
28 Source Port ‘ BOCE HeEs — <Outer IP Dest Address, Outer UDP Port,
8 UDP Length ‘ UDP Checksum VirtualWire Connector ID> = <IP, UDP Port, connector ID>
virtualWire Connector ID YESJ/
§ :':' Inner Destination MAC Address
gk
He Inner Destination MAC Address | Inner Source MAC Address type of Local Extender
B ?
@ Inner Source MAC Address target? l
Optional Ethertype = C-Tag [802.1Q] | Inner.VLAN Tag Information Local Endpoiny, —
. <connector ID, payload>
Original Ethernet Payload Send packet up virtual interface via VPN (TCP) tunnel Send Packet
o RECEIVE: -« e
> | @ Endpoint \I, @ Gateway \L@ Extender

Figure 2: VirtualWire encapsulation

‘ Strip off outer headers ‘ ‘ Strip off outer headers Strip off outer IP and UDP

headers

Use <connector id> to

The use of virtual network components ensures that‘ look up virtual port

look up physical port

‘ Use <connector id> to

a cloud user can consistently implement even complex Send

) N) Send packet up Send packet up <connector ID, payload>
network semantics without provider support. From the ’ vintualinterace ‘ ’ physical port ‘ 2 P () e
provider’'s perspective, the combination of these com- >
ponents c_ompris_e a c_Ioud_ user's virtual network in its op oot e omaaror I o o . 1€ P o !
entirety, simplifying migration and management. How- T
ever, virtualized network components are limited by the Encapsulate

. . Send — <Outer IP Dest Address, Outer UDP Port,

performance of the underlying physical host and are un- Packet VirtualWire Connector ID> = <IP, UDP Port, connector ID>
likely to perform like physical network componerits.
Considerations when building efficient virtual networks Figure 3: Path of a packet in VirtualWire

in VirtualWire are discussed in Section 3.5.

3.2 Provider Layer: Connectors network segments. The target IP address and port num-

) _) ber correspond to the physical network address of the tar-
The provider links to_g_ether VvNICs on vmual network get endpoint manager. Upon receipt of a packet, the end-
components as specified by the user usingnectors nint manager strips the outer headers, examines the con-
Connectors have twendpoints each bound to @ VNIC. - pector ID, and forwards the packet to the target endpoint.
The binding between endpoint and VNIC is configuredrigyre 3 details the path of a packet in VirtualWire. In
by anendpoint manageresiding on a hypervisor. This qrder to maintain the network topology, every endpoint
binding does not change, even if a network componentigends packets to exactly one other endpoint. If an end-
migrated to another hypervisor. On migration, the Con-point is migrated, the migration process ensures the rele-
figuration (e.g., tunnelln.g destinations) of endpomts_lsvant endpoint configuration is updated to address encap-
updated to ensure the virtual network topology is main-gy|ated packets to the correct endpoint manager (further
tained (see Section 3.4). discussed in Section 3.4).

Encapsulation. Connectors are layer-2-in-layer-3 net- The extra 44 bytes added to each packet introduces a
work tunnels. A layer 2 packet sent on a vVNIC enters itsrisk of fragmentation. VirtualWire adopts the path MTU
associated endpoint, which encapsulates the full packetiscovery technique used by NVGRE [30] to enable a
(with the entire MAC header, including VLAN tags) in a server to deduce the reduced MTU and avoid fragmen-
UDP packet; the 44 byte header is shown in Figure 2tation of packets after encapsulation. Since encapsulated
The encapsulation used by endpoints is similar to thepackets are unreliable, it is possible that they may get
wire format in VXLAN [23]; however, unlike VXLAN, dropped by the network for a number of reasons, in-
the header encodes a 32-bit connector ID instead of a negjuding downtime during migration of a component or
work segment (e.g., a VNI in VXLAN terminology) be- endpoint. This is akin to the unreliability of Ethernet,
cause the provider does not need to maintain a notion ah which packets are delivered in best-effort fashion. If

3For example, a physical switch may have 32 ports, all capable greater reliability is desired, a reliable transport poato

achieving 1 Gbps. An equivalent switch in VirtualWire mayHmsted may be used to |mplement a connector.

on a physical machine with a single 1 Gbps interface. Theuadrt L .
switch will still have 32 ports, but is now only capable of asfing ~ OPtimizations. Connectors between virtual network

1 Gbps—in aggregate—due to the limitations of the physiwgiface. =~ components running on the same hypervisor are auto-

matically collapsed by the endpoint manager. In partic-cloud—to initiate migration and copy memory and meta-
ular, the endpoint manager configures the endpoints tdata between thethFor example, a cloud provider may
route packets directly to the co-located endpoint, ratheenable a cloud user to migrate a VM by specifying a des-
than encapsulating self-addressed packets (see Figure 8nation hypervisor address. VirtualWire augments this
If, at a later time, one of the virtual network componentsmechanism to maintain the logical network topology as
is migrated to a different hypervisor, the endpoint man-the VM migrates.

ager re-enables encapsulation. In particular, the endpoint manager on each hypervi-

Extenders. Similarly, connectors also automatically ex- soris ilntegrated with its live migration mgchanism. The
tend across cloud networks and firewalls. Instead of ad€"dPoiNt manager on the source hypervisor maintains a

dressing encapsulated packets directly to the recipierﬂumber_ of connector endpoints for t_he migrating VM_’
endpoint manager, packets are rerouted t@xtender ~ 9ePending on the number of vNICs it has. During mi-
An extender is a server (or set of servers) that both actd"ation, the source copies the endpoint configurations to

as an endpoint manager and maintains a permanent vpige destination as part of the VM metadata. By defini-
tunnel to another cloud. Extenders are well known withintion: the source can also communicate with the hypervi-

a provider: any endpoint manager within a cloud knowsSOr(s) hosting the sister endpoint(s) (perhaps through one

of the extenders and how to use them to connect to endR’ more extenders). The source copies information about

points on other clouds. As shown in Figure 3, an extenihe destination to each so that every sister endpoints can

der may be local (co-located with an endpoint). Packet?e updated. If the sister endpoint is on a different cloud

arriving at an extender are automatically sent across thi1an the destination, both endpoints are configured to

VPN tunnel, where they enter a new endpoint that enfOmmunicate with the appropriate extender.

capsulates the packet and sends it to the target endpoint

manager. From the point of view of the network compo-3.5 Building an Efficient Virtual Network
nents, the extender is invisible: the two network compo-

nents remain logically connected. If the virtual network Live migration creates challenges for maintaining effi-

components migrate to the same cloud, the extender wilfiency in a virtual network, especially if the virtual net-
no longer be used. work crosses cloud boundaries. Two conflicting design

goals must be considered when building virtual networks

on VirtualWire.
3.3 Connector Management

Splitting Components. It may be difficult to effi-

VirtualWire exposes a simple interface made up of twociently place shared network components to maximize
OperationSconnect anddisconnect, which create and co-location if servers are m|gra‘[|ng For examp|e’ con-
destroy connectors between the VNICs on virtual servergider a deployment containing a central switch between
and network components. Similarly, VirtualWire ex- two communicating pairs of VMs. If one pair of VMs
poses aonnect anddisconnect for extenders. These mjgrates to another cloud it may be more efficient to re-
interfaces augment the typical VM creation and destrucpjace the switch with two switches and place one switch
tion interfaces exposed by cloud providers. Management, each cloud. Alternate, split versions of a switch, such
of endpoints and connectors is intrinsically decentral-as a distributed virtual switch (e.g., VMware DVS [33]),
ized; no additional configuration database is required. ¢an be implemented in VirtualWire by connecting each

A virtual network created with VirtualWire can be part of the DVS with VirtualWire connectors. Impor-
connected to an existing physical network using a phystantly, even if the user runs a distributed component, the

ical network appliance calledVértualWire gateway A provider only manages endpoints, not a control plane.
VirtualWire gateway is a server with one or more physi-

cal network interfaces and VirtualWire endpoints. From
the point of view of the physical and virtual network

Reducing Device Sprawl.Long chains of components
can cause convoluted and inefficient routing paths as

components on either side of the gateway, the gatewa omponents_ or Servers are migrated. ~ For e_xa_lmple, a
hain of switches may involve packets that originate at

is transparent: traffic sent down a network cable from loud. t It itch | ther cloud. only ©
one component will arrive at the next component on theP€ cloud, travel o a switch in another cloud, only to re-

same interface as if both were in the physical network. turn to thg next switch in the chain in the (_)rlgmal cloud,
Such chains may be able to be collapsed into fewer com-

)]) ponents in VirtualWire. For instance, a chain or tree
3.4 Live Migration of switches may be able to be implemented as a single

As providers begin to support live migratias a ser- big switch. However, collapsing components is at odds

vice _they Wi_” expose APIs f_or their hyperVisorS to_com- 4Alternately, nested virtualization enables hypervisarel control
municate with other hypervisors—perhaps on a differentn third-party clouds [36] to expose such APIs today.

Blanket layer provides hypervisor level Xen-Blanket Xen-Blanket 1 Xen-Blanket 2 Xen-Blanket 3
features through nested virtualization on J (nested)

third-party clouds .

Network
Component

Endpoint

Manager

Front Front Front Front

,’I el o - -
Manager ,’/ Third-party cloud

Back Back Endpoint Back Back
vif1.0 vif1.0 || vwel.0 vifl.1 vif1.0
PHYSICAL MACHINE PHYSICAL MACHINE | | | | l

Dom U Dom U Dom U
Network Component

Xen-Blanket
(non-nested)

Xen/Dom 0
Network Server vSwitch Server

Component

VirtualWire

¢ aanmo uIsn —> |

Xen/Dom 0

VirtualWire

Endpoint

vwel.0

Endpoint

vwel.l

Endpoint

vwel.0

Bridge Bridge Bridge Bridge
brl.o brl.o0 bri.1 brl.o

Front Front Front
etho T etho — etho S

A aggn . . Dom 0
with splitting components (described above). To navi-

gate this tradeoff, ongoing work is considering live split-

ting and merging (collapsing) of virtual network compo- Outgoing Interface Outgoing Interface
nents [29]' etho eth0

Figure 4: Nested Virtualization

xenbr0

|¢= ano19 ALHVd-aHIHL—| é—— @3INMO HISN —————— 3|

PHYSICAL MACHINE 1 PHYSICAL MACHINE 2

4 Implementation Figure 5: Implementation

We have implemented VirtualWire on an enterprise

cloud, an academic testbed, and Amazon EC2. We aug globally accessible NFS shareVMs on the Xen-

ment existing hypervisor-level functions that provide the Blanket can be live migrated using Xen's live migration

basic VM migration mechanisms for a live migration ser- mechanism [11]; we discuss enhancements to it in Sec-

vice. For Amazon EC2, where we do not have access téion 4.5.

the underlying hypervisor, we leverage nested virtualiza- We relax the isolation of the VM for some network

tion [8, 36] (Figure 4). components, like the Linux software bridge. Instead,
we implement the switch in Domain 0, as shown in Fig-

. .. ure 6(a), and avoid two additional packet copies required
4.1 Nested Virtualization Background to transfer a packet into and out of a guest VM. Because

We leverage the Xen-Blanket [36] to deploy Virtualwire the switch is a simple component, migration is achieved
across a mixture of public and private clouds. The Xen-PY remotely reconfiguring Linux bridges with thectl

Blanket is an open-source nested virtualization systenfommand. However, complex network components can-
consisting of a modified Xen [6] hypervisor that runs— not be as easily implemented or migrated in Domain O.

without special support—on top of a variety of cloud

providers or directly on hardware. The Xen-Blanketcon-4.3 Connectors

tains the Xen live migration implementation that cooper-

ates with other Xen hypervisors to migrate a VM. Connector endpoints are bound to back-end guest vNICs
Guest VMs on the Xen-Blanket are assigned vNICsusing a dedicated software bridge in the Xen-Blanket

that use paravirtualized Xen split (front- and back-end)Domain 0, as shown in Figure 5. Endpoint tunneling

network drivers. Each guest VNIC is a front-end with is performed via the endpoint manager kernel module.

a Corresponding back-end in the control domain (Do_We implemented tunneling in a Domain 0 kernel module

main 0) of the Xen-Blanket. All guest VM packets pass t0 reduce the number of context switches required when
through the back-end vNIC. compared to a userspace implementation, sucttas,

which uses the TAP/TUN mechanism. A kernel imple-
mentation is especially important on the Xen-Blanket be-
4.2 Network Components cause nested virtualization magnifies the cost of context

We implement network components in Xen-BIanketSWitChes [36]. Inside the kernel module, each endpoint

guest VMs. For example, Figure 5 shows two serverdas an assogiated socket and ‘hfead to listen for L.JDP
connected to a switch component. The switch Compopackets recelyed on the. external mterfa(_:e, but destined
nent is implemented by running the standard Linux soft—'cor the endp0|_nt. Outgoing packets are mtgrceptgd and
ware bridge in a Xen-Blanket guest VM configured with encapsulated in UDP packets as described in Section 3.2,

two VNICs. To run a server or component VM on any then sent through Domain 0’s external interface.

X_en'_BIanket hyperyi_sor on any CI(_)Ud’ we place Virtu_al 5Providing an efficient mechanism to access VM disk images fro
disk images containing the root filesystem of VMs in any cloud is out of the scope of this paper.

Xen-Blanket 1 Xen-Blanket 2 Xen-Blanket 3

Dom U Dom U
Server Server

vSwitch

L n-- e

H H

H H

H H

H Endpoint F1 4 Endpoint H

i Bridge i i Bridge
Outgoing Outgoing Outgoing

Interface Dom 0 Dom 0 Interface Interface Dom 0

(a) Drop network component into Domain 0

[* create a new endpoint N on instance A that receives
packets on Ady and sends packets to Aglt/

echo "<N> <Adra> <Adrg>" > /proc/vw/create

[* return current endpoint config */

cat /proc/vw/<N>

/* update endpoint send config (e.g. other end migrated) */

echo "<Adrc>" > /proc/vw/<N>

/* destroy the endpoint (e.g. this end migrated) */

echo "<N>" > /proc/vw/destroy

Xen-Blanket 1 Xen-Blanket 2

— e — — Figure 7: The proc interface to control VirtualWire end-
Server Server pOI ntS .

o Evpan|
: tion 4.5). A VirtualWire Gateway is implemented as a

B e 250 server with an interface to a physical network and one or

Outgoing | Outgoing R
Dom 0 Dom 0 more connector endpoints.

(b) Collapse endpoint into endpoint bridge

Xen Blanket 1 4.5 Live Migration

Dom U Dom U
Server Server

Dom 0 Endpoint Bridge Endpoint Bridge

We modified the local Xen live VM migration pro-
cess [11] to include endpoint migration. During live
migration, the source hypervisor instructs the destina-
tion hypervisor to create an empty VM container. Then,
the source iteratively copies memory to the destination,
while the migrating VM continues to run. At some point,
the source stops the VM and copies the final memory
pages and other execution state to the destination.
In VirtualWire, we modify this process in two ways.
First, when the destination creates the empty VM con-
If both endpoints of a connector are co-located on thaainer (during the pre-copy phase), it also creates a set
same Xen-Blanket instance, the endpoint manager inof endpoints that will encapsulate outgoing packets with
structs the endpoints to forgo encapsulation. Instead, thghe correct VirtualWire header. It also creates a set of
back-end vNICs from the network components are conpridges to bind the back-end vNICs of the migrating VM
nected through a software bridge in Domain 0, called ano these newly created endpoints. The endpoint configu-
endpoint bridge The configuration after collapsing one rations are supplied by the source and contain informa-
endpoint is depicted in Figure 6(b). Endpoints are col-tion about the clouds where sister endpoints reside. If
lapsed even when a virtual network component is imple-sister endpoints reside on different clouds, the endpoints
mented in Domain 0. Figure 6(c) shows the configurationgre configured to route to an extender.
if all three VMs are co-located and the switch is imple- Second, during the stop-and-copy phase, the source
mented in Domain 0. endpoint manager contacts the sister endpoints for all mi-
Extenders are implemented with OpenVPN. Eachgrating vNIC connectors. Once again, endpoint config-
Xen-Blanket instance is configured with the location of urations (the address and cloud of the destination) are
all extenders from the current cloud to all other clouds.supplied by the source. Each sister endpoint is updated,
To improve performance, the extender is implemented irusing an extender if necessary. Finally, after migration
Domain 0. completes, the source deletes the original endpoints.
Unlike live VM migration today, a migrating VM does
not end up behind a different switch port from the per-
spective of the logical network. Thus, no unsolicited
ARPs need to be generated.

(c) Collapse endpoints and drop network components info Domain 0

Figure 6: Implementation optimizations

4.4 Connector Management

We implemented an interface in thigroc filesystem in
the endpoint manager kernel module, shown in Figure 7,

through which endpoints are controlled. This interface5 Evaluation

provides a convenient mechanism to create and destroy

them as needed. It is also used by the local migratiorin this section, we first demonstrate cross-cloud live mi-
process to update endpoints during a VM migration (Secgration of VMs and network components from our local

Downtime Duration Downtime Duration
Non-nested 0.7[0.4] | 19.86 [0.2] Localto Local| 1.3[0.5] 20.13[0.1]
Nested 1.0[0.5] | 20.04 [0.1] EC2to EC2 1.9[0.3] 10.69[0.6]
Nested w/ endpoints 1.3 [0.5] | 20.13[0.1] Local to EC2 2.8[1.2] | 162.25[150.0]

Table 1: Mean [w/standard deviation] downtime (s) andTable 2: Mean [w/standard deviation] downtime (s) and
total duration (s) for local live VM migration total duration (s) for live VM migration

environment to Amazon EC2. Then, we show that Vir- are unaware of other systems that enable cross-provider
tualWire is flexible by evaluating a 3-tier enterprise ap-live migration, we do not compare the performance of
plication with a complex network configuration on EC2. migration in VirtualWire to other systems. For these ex-
Finally, we describe microbenchmarks and the perforperiments, we migrate a VM that is continuously receiv-
mance of VirtualWire under various optimizations. ing netperf UDP throughput benchmark traffic from
another (initially co-located) VM. The network topol-
ogy includes a virtual switch, also co-located, between
the two VMs and implemented in Domain O for perfor-
To evaluate VirtualWire, we use resources at our locafmance. For each experiment, we report the average (and
institution as well as from Amazon EC2. standard deviation) application downtime and the total
time the migration operation took to complete from 6
identical runs. Application downtime is calculated by ex-
amining periodic output from theetperf benchmark.

' The performance time of live migration of a VM (re-
ceivingnetperf UDP traffic) between two machines in

5.1 Experimental Setup

Local Testbed. In our local environment, we use up

to two physical machines connected by a 1 Gbps net
work, each containing two six-core 2.93 GHz processors
24 GB of memory, and four 1 TB disks. Each machine
runs Xen with 2 VCPUs and 4 GB of memory de<j|CatEdour local setup is shown in Table 1. The VM and its

to Domain 0. On this underlying system, we use HVM netperf partner VM were both run on a single layer of

instances configured with 22 VCPUs and 12 GB of mem- . o
ory to run Xen-Blanket and VirtualWire, virtualization fion-nesteflor nested setupnéstedand

nested w/ endpointdbefore and after the migration. To
Amazon EC2. In Amazon EC2, we use up to six Clus- isolate the nesting overhead from endpoint migration
ter Compute Quadruple Extra Large instances, each witlbverhead, VirtualWire connectors are not used between
23 GB memory, 33.5 EC2 Compute Units, 1690 GB of the two VMs in thenon-nestec@ndnestedexperiments;
local instance storage, and a 10 Gigabit Ethernet betweeinstead, the physical network is bridged. We find a 43%
instances. increase in downtime and an 18% increase in total dura-

Both environments use the Xen-Blanket patches fortion due to nesting. The added task of migrating Virtual-
nested virtualization. The Xen-Blanket Domain O is Wire endpoints introduces an additional 30% increase in

configured with 8 VCPUs and 4 GB of memory. Al downtime, but a negligible increase in total duration.

guests (DomUs) are paravirtualized instances configured 'able 2 quantifies the performance of live migra-
with 4 VCPUs and 2 GB of memory, and can run ei- 10N across clouds while maintaining the virtual network

ther on a single layer of virtualization in the local envi- ©0P0l0gy using a VirtualWire connector. We compare the
ronment or nested within a Xen-Blanket instance. AnPerformance of single-cloud live migration within our
NFS server running at our local setup provides VM !0cal nested setud.gcal to Loca) and within Amazon
disk images; VMs on Amazon EC2 access the NFSEC2 EC2to EC2to mulltl-cloud migration between the
server through a VPN tunnel. For most of the experi-WO (Local to EC3. Within one cloud, local or EC2, the
ments, we useetpert to generate 1400 byte packets in latency betwee_n _the instances is within 0.3 ms, wh_ergas
UDP_STREAM and UDPRR modes for throughput and &€T0Ss clouds it is about 10 ms. VPN overhead limits

latency measurements, respectively. throughput across clouds to approximat_ely 230 Mbps.
The 10 Gbps network between our EC2 instances leads

to significantly reduced total migration time when com-
pared to local; however, the downtime was comparable.
Live migration of a VM (receivinthetperf UDP traf-

%ic) between our local nested setup and Amazon EC2 has

5.2 Cross-Cloud Live Migration

and servers in VirtualWire to undergo live VM migra-
thn yvhlle _malntamlng the virtual network topology both 614 frequency of the periodic output is set to 0.1 s, so wea@ann
within a single cloud and between clouds. Because weneasure downtime less than 0.1's.

1600 ™ T T T T T 100 B e
1400 |

80 [

1200 |

1000 60

800

VM2 migration starts
VM2 migration ends

600 40 -

Throughput (Mbps)
Good Requests (%)

400

Baseline ——

20 Nested Baseline -—x--

VirtualWire (distributed) ----x----
) VirtualWire (qaive) =

. . . .
200 300 400 500 600 700 200 300 400 500 600 700

200

[VM1 migration ends

:

o
o T T T T T
VM1 migration starts %

.
o
<}

Time (s) Client Load (Simultaneous Sessions)

Figure 8: Throughput over time between two VMs mi- Figure 10: Performance of RUBIS application on EC2
grating to Amazon EC2

VMs each have a hardcoded configuration—route table
entries and IP addresses—that introduces constraints that
necessitate a flexible virtual network.

Figure 10 shows the number of “good requebiss-
ing the RUBIS application under various client load (si-
multaneous sessions). We examine four scenarios. The

10 |

[
T

i VM1 migration starts
z VM1 migration ends

Latency (ms)

VM2 migration starts

A— first two scenarios require manual modifications to the
Ol T 100 200 300 400 500 600 700 800 900 network configuration of each VM, but represent best-
Time (<) case scenarios in terms of application performance. The

baselineis obtained by running each VM directly in an

Amazon EC2 medium instance. Thested baselineins

an identically provisioned VM inside a Xen-Blanket in-

stance, and therefore represents a best-case given nested

a downtime of 2.8 s and a total duration of 162.25 s onvirtualization overheads.

average, but variation is high: the duration ranged from The other two scenarios are configurations of Virtual-

48 s to 8 min. For an idle VM, the performance of the Wire and require no modifications to the guest VMs. The

network between machines has little effect: the down-irst scenarioVirtualWire naive introduces a sixth VM

time during live migration between two local machines that runs a virtual switch. Connectors are configured be-

and from local to EC2 is 1.4 s on average. tween each of the five VMs and the switch VM. The sec-
We ran two more experimentsshown in Figure 8 and ond scenarioyirtualWire distributed replaces the switch

Figure 9, to identify the throughput and latency over timevM with a distributed switch component as discussed

for the test deployment as the recipient VM and then then Section 3.5 and further evaluated in Section 5.6. In

switch and the sender VM were live migrated to Ama- this configuration, VirtualWire achieves within 4% of the

zon EC2, respectively. Migration of the switch did not nested baseline and 9% of the baseline.

affect throughput because its Domain 0 implementation

was trivial to migrate. As expected, significant degrada- .

tion in the throughput and latency occurs when not all®-4 Microbenchmarks

components are co-located on the same cloud.

Figure 9: Latency over time between two VMs migrating
to Amazon EC2.

Nesting Overhead.We isolate the overhead VirtualWire

53 Supporting Complex Networks incurs due to Xen-Blanket nested virtualization using a
) PP g P netperf process in the Domain 0 of one physical ma-

In this subsection, we show that VirtualWire can supportchine across the 1 Gbps link in the local setup. We iden-
a complex network topology of an application with mul- tify the throughput, latency and CPU utilization when
tiple tiers and quantify the performance implications. Asnetwork packets are received by a single-layer Domain O
an application, we run the RUBIS [13] benchmark with (single dom0), inside a guest running on the first layer
three VMs representing the Web tier, application serve(single domU), on the Xen-Blanket Domain G¢sted

tier, and database tier, respectively. To better represerom0), or inside a guest running on the Xen-Blanket
the complexity that can arise in enterprise applications(nested domU). UDP throughput is maintained at line
we add two VMs running software firewallsgtables) speed in all cases, while TCP throughput decreases by
in between each tier. Like many real applications, theb.7% fornested domU. However, as shown in Table 3,

"We could not measure both the throughput and latency from-a si 8SPECweb2009, a similar benchmark, defines good requests as
gle experiment usingetperf. those which complete with a latency within 2000 ms [31].

Latency | Agg. CPU Util. 2
Single Dom0 | 63 s 61% F
Single DomU 86 us 88% z
Nested DomO| 96 us 97% g
Nested DomU| 210us 196% <

Number of Endpoints

Table 3: Network latency comparison in nested and nonFigure 12: Scalability of VirtualWire endpoints in a
nested virtualization settings nested Domain 0

1000

4 Connector w/o Extender Connector w/ Extender
800 nested ez 4

Throughput| Latency | Throughput| Latency
Local to Local | 929.52 Mbps| .240 ms| 233.00 Mbps| .300 ms

EC2to EC2 1012.80 Mbps| .270 ms| 230.83 Mbps| .310 ms
Local to EC2 n/a n/a | 239.96 Mbps| 10 ms

600 -

400

200 |

Throughput (Mbps)

baseline tinc OpenVPN vtun VirtualWire
connector

) . Table 4: Performance of connectors with and without ex-
Figure 11: Tunnel throughput comparison

tenders

the latency increases sharply with a corresponding into 259%. Across clouds, where extenders must be used,
crease in CPU utilization due to extra packet copies angye also see high latency. This result underscores the im-
context switching. portance of co-locating heavily communicating VMs on

Connectors. VirtualWire connectors are implemented in & single cloud, rather than across clouds when possible.
a kernel module and therefore avoid the high penalty for

context switches experienced in the Xen-Blanket [36_].5_5 Component Chain Length

Figure 11 compares the performance of connectors with) . o)
various software tunnel packages. On our local—bothWe examine the effects of chain-length within a Virtual-
nested and non-nested—1 Gbps setup, we measure tiire network topology on throughput and latency with
UDP performance of a VM sending data to another VM and without optimizations. We restrict our experiment
through the tunnel. The baseline is a measurement dP & single physical machine in the local environment to
the direct (non-tunneled) link between the VMs. The eliminate network congestion and jitter from the results.
kernel-module approach of VirtualWire connectors pays/Ve vary the number of switches in the VirtualWire topol-
off: while connectors increase throughput by a factorody between theetpers endpoints. The switches are
of 1.55 over the popular open-source tunneling softwar&onfigured in a chain: each switch has two ports, while

vtun in a non-nested scenario, it achieves a factor of 3.28he server VMs have a single interface.
improvement in a nested environment. We first examine the case in which components are on

. .)) different instances. We run five Xen-Blanket instances
Endpoint Scalability. In VirtualWire, a network com- on a single physical machine, with 4 GB of memory

ponent with many ports,. such as a.switch or rout(_er COland 4 VCPUs each, each hosting one VM. Figure 13(a)
;espondsdto a Dom(LjJ W.'th m:fll_ny virtual ne';]work '?tg_rl'_ and Figure 13(b) show that, as expected, the throughput
allccesdan_ many en pomts.h 0 mebasurfe_t efscaa '_'t):‘,lightly decreases and the latency linearly increases as
of endpoints, we increase the number of interiaces Wlﬂ1he chain length increases. By dropping all of the switch

endpoints in the DomU and run several S|multaneousVMS into the Domain O of their respective Xen-Blanket
netperf UDP throughputtests over each connector. Thg,qiances we found throughput was maintained with at
results are shown in Figure 12. The 1 Gbps bandwidtho qt three switches on the path while latency was re-
becomes split bgtwe_en the individual conneqtors, but iNyuced from approximately 237s to 119us per switch.
aggregate remains high for at least 16 endpoints. If components share an instances, endpoints are col-
Extenders. VirtualWire uses OpenVPN to create exten- lapsed and encapsulation is unnecessary. To evaluate this
ders so that connectors can span clouds. Table 4 shoveptimization, we run a single Xen-Blanket instance with
the performance (measured witbtperf) between in- 14 GB of memory and 22 VCPUs so that it can sup-
stances on our local nested setup or EC2 with and withport up to five guests and Domain 0. Figure 14(a) and
out extenders. As previously discussed (Figure 11)Figure 14(b) show the throughput and latency between
OpenVPN introduces significant overhead; when usedhe two servers with up to three switch VMs interpos-
as an extender, throughput and latency suffered by upg on the packets in four configurations: either encapsu-

10

1200 T T T T 1200

_ 1000 [4 1000 |

Q s M)

z g

s 800 9 s 800

= | 5 L

2 600 S o { a 600

o [=2]

=1 =3

3 400 ° 400 A .

£ = Both Optimizations —+— B
[== 200 = 200 b Domain 0 Optimization ---»--- B

Domain 0 Optimization —+—
No Optimizal‘ion —mmeee

Endpoint Collapse -------
No Optimizatjon o

. . . .
0 1 2 3 0 1 2 3

Chain Length Chain Length
(a) Throughput (a) Throughput
1000 — ; ; 1000 ; — ;
No Optimization -------- No Optimization &
Domain 0 Optimization —+— Endpoint Collapse -
800 { 800 Domain 0 Optimization ------ . i
- - Both Optimizations —+— e -
2 600 | S 600 | f '
3 g
£ a0t § w0l T
§ § P 3 *
200 |- 200 T ¥ B }
0 1 2 3 0 1 2 3
Chain Length Chain Length
(b) Latency (b) Latency
Figure 13: Effects of component chaining on throughputFigure 14: Effects of endpoint collapse and Domain 0
and latency optimization in co-located component chains

lating or collapsing endpoints, each with DomU or Do- 6 Conclusion

main 0 switches. By avoiding encapsulation, endpoint o) o

collapse reduces latency by about 185 per switch. Advances in virtual networking within clouds to sup-

Combined with Domain 0 switches, good performancePOrt live migration do not directly apply across clouds.

is maintained for all evaluated chain lengths. These rePespite the complexity incurred by providers to offer

sults Suggest that beyond C0-|0cating heav"y Communi.\/lrtual n-etwork abstrQCtlonS, cloud users are Ultlmately

cating components on the same cloud, VirtualWire def€Sponsible for ensuring packets flow correctly through

rives significant benefit from co-locating components onclouds and virtual networks. We have presented Virtual-

the same instance. Wire, a system that consistently enables expressive vir-
tual networks across clouds while reducing provider in-
volvement to the intrinsically decentralized task of man-

5.6 Splitting Components aging pairs of VNICs. With VirtualWire, we have live
migrated servers and network components to EC2, expe-

In this subsection, we demonstrate the performance adiencing as low as 1.4 s of downtime. VirtualWire sup-

vantages of splitting bottleneck network componentsports complex network topologies: a 3-tier application

We runnetperf between four server VMs on four EC2 With address and middlebox requirements runs on EC2

Xen-Blanket instances. All VMs are connected to a vir- Without modification, maintaining within 9% of the per-

tual switch component running in Domain 0 on a fifth formance of a native deployment. The inherent elasticity

EC2 Xen-Blanket instance. Traversing the switch, eactPf VirtualWire—the ability to live migrate any network

pair of VMs can achieve throughput of 1.39 Gbps on av-component in a virtual network—creates opportunities

erage. If two flows are active at the same time, throughfor placement optimizations and is well-suited to increas-

put is split between the two flows, dropping them to ingly elastic cloud workloads.

720.5 Mbps each.

We split the virtual switch component by by run- References

ning a Linux bridge on each of the four EC2 Xen-

Blanket instances and manually linking them (with con- [1] Amazon Virtual Private Cloud. http://aws.amazon.com/

nectors) and configuring them (wittbtables) to act as vpe/. ,

a single switch. The split version of the virtual switch 12 CloudSwitch.http://wwu. cloudswitch. com.

avoids the bottleneck encountered with a centralized vir- [3] The Cisco Network Simulator & Router Simulatomttp://

tual switch component. In this case, each pair of VMs www.boson.com/netsim-cisco-network-simulator.

achieve throughput of 1.77 Gbps on average regardless$4] vCider. http://www.vcider.com.

of whether one or two flows are active. [5] VPN-Cubed.http://www.cohesiveft.com/vpncubed/.

11

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

BARHAM, P., DrRAGOvIC, B., FRASER K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., FRATT, |., AND
WARFIELD, A. Xen and the Art of Virtualization. IProc. of
ACM SOSHKBolton Landing, NY, Oct. 2003).

BAVIER, A., FEAMSTER, N., HUANG, M., PETERSON L.,
AND REXFORD, J. In VINI veritas: realistic and controlled net-
work experimentation. I®roc. of ACM SIGCOMMPisa, Italy,
Sept. 2006).

BEN-YEHUDA, M., DAY, M. D., DUBITZKY, Z., FACTOR, M.,
HAR'EL, N., GORDON, A., LIGUORI, A., WASSERMAN, O.,
AND YASSOUR B.-A. The turtles project: Design and imple-
mentation of nested virtualization. roc. of USENIX OSDI
(Vancouver, BC, Canada, Oct. 2010).

BENSON, T., AKELLA, A., SHAIKH, A., AND SAHU, S. Cloud-
NaasS: a cloud networking platform for enterprise applmagi In
Proc. of ACM SoC(QCascais, Portugal, Oct. 2011).

Cisco SysTEMS, INC. Cisco nexus 1000v series switches data
sheet. http://www.cisco.com/en/US/prod/collateral/
switches/ps9441/ps9902/data_sheet_c78-492971.

html, Apr. 2012.

CLARK, C., RRASER K., HAND, S., HANSEN, J. G., UL, E.,
LIMPACH, C., RATT, |., AND WARFIELD, A. Live Migration
of Virtual Machines. InProc. of USENIX NSD(May 2005).

DAVIE, B., AND GROSS J. A stateless transport tunneling pro-
tocol for network virtualization (STT)http://tools.ietf.
org/html/draft-davie-stt-02, Aug. 2012.

EMMANUEL CECCHET AND JULIE MARGUERITE AND WILLY
ZWAENEPOEL Performance and Scalability of EJB Applica-
tions. InProc. of OOPSLASeattle, WA, Nov. 2002).

FEAMSTER, N., GAO, L., AND REXFORD, J. How to lease the
internet in your spare timeACM SIGCOMM CCR 371 (Jan.
2007).

GREENBERG A., HAMILTON, J. R., &IN, N., KANDULA, S.,
KiMm, C., LAHIRI, P., MALTZ, D. A., PATEL, P., AND SEN-
GUPTA, S. VL2: A Scalable and Flexible Data Center Network.
In Proc. of ACM SIGCOMMSpain, Aug. 2009).

GUDE, N., KOoPONEN T., PETTIT, J., FFAFF, B., CASADO,
M., McKEOWN, N., AND SHENKER, S. NOX: Towards an Op-
erating System for NetworksACM SIGCOMM CCR 383 (July
2008).

HAJJAT, M., SUN, X., SUNG, Y.-W. E., MALTZ, D. A., RAO,
S., RIPANIDKULCHAI, K., AND TAWARMALANI , M. Cloud-
ward Bound: Planning for Beneficial Migration of Enterprisg-
plications to the Cloud. IRroc. of ACM SIGCOMMNew Delhi,
India, Aug. 2010).

HANDLEY, M., KOHLER, E., GHOSH, A., HODSON, O., AND
RADOSLAvOV, P. Designing Extensible IP Router Software. In
Proc. of USENIX NSD(Boston, MA, May 2005).

JANG, X., AND Xu, D. Violin: virtual internetworking on
overlay infrastructure. I®roc. International conference on Par-
allel and Distributed Processing and Applicatio(tsong Kong,
China, Dec. 2004).

KELLER, E., GHORBANI, S., CAESAR, M., AND REXFORD, J.
Live migration of an entire network (and its hosts). Rroc. of
ACM HotNetgRedmond, Washington, Oct. 2012).

KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND
KAASHOEK, F. M. The Click Modular Router.ACM Trans-
actions on Compuer Systems(£&igust 2000), 263-297.

KopoNEN T., CAsADO, M., GUDE, N., STRIBLING, J.,
POUTIEVSKI, L., ZHU, M., RAMANATHAN , R., IWATA, Y., IN-
OUE, H., , HAMA, T., AND SHENKER, S. Onix: A Distributed
Control Platform for Large-scale Production Networks.Pioc.
of USENIX OSDIVancouver, Canada, Oct. 2010).

12

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

MAHALINGAM, M., DuTT, D., DUDA, K., AGARWAL,
P., KREEGER L., SRIDHAR, T., BURSELL, M., AND
WRIGHT, C. VXLAN: A Framework for Overlaying

Virtualized Layer 2 Networks over Layer 3 Networks.
http://tools.ietf.org/html/draft-mahalingam-
dutt-dcops-vxlan-00, Aug. 2011.

McKEOWN, N., ANDERSON T., BALAKRISHNAN, H.,
PARULKAR, G., FETERSON L., REXFORD, J., SHENKER, S.,
AND TURNER, J. OpenFlow: Enabling Innovation in Campus
Networks.ACM SIGCOMM CCR 38 (Apr. 2008).

MUDIGONDA, J., YALAGANDULA , P., MOGUL, J., STIEKES,
B., AND POUFFARY, Y. NetLord: A Scalable Multi-Tenant Net-
work Architecture for Virtualized Datacenters. Broc. of ACM
SIGCOMM(Toronto, Canada, Aug. 2011).

MYSORE, R. N., AMBORIS, A., FARRINGTON, N., HUANG,
N., MIRI, P., RADHAKRISHNAN, S., SIBRAMANYA, V., AND
VAHDAT, A. PortLand: A Scalable Fault-Tolerant Layer 2 Data
Center Network Fabric. IProc. of ACM SIGCOMM(Aug.
2008).

NELSON, M., Lim, B.-H., AND HUTCHINS, G. Fast Transpar-
ent Migration for Virtual Machines. Ifroc. of USENIX Annual
Technical Conf(Anaheim, CA, Apr. 2005).

PFAFF, B., PETTIT, J., KOPONEN T., AMIDON, K., CASADO,
M., AND SHENKER, S. Extending Networking Into the Virtu-
alization Layer. InProc. of ACM HotNetg§New York, NY, Oct.
2009).

RAJAGOPALAN, S., WiLLIAMS, D., JAMJOOM, H., AND
WARFIELD, A. Split/Merge: System support for elastic execu-
tion in virtual middleboxes (to appear). Rroc. of USENIX NSDI
(Lombard, IL, Apr. 2013).

SRIDHARAN, M., DuDA, K., GANGA,
A., LIN, G., FEARSON, M., THALER, P., TUMULURI,
C., VENKATARAMIAH, N., AND WANG, Y. NVGRE:
Network Virtualization using Generic Routing Encapsula-
tion. http://tools.ietf.org/html/-draft-sridharan-
virtualization-nvgre-00, Sept. 2011.

STANDARD PERFORMANCE EVALUATION CORPORATION
Specweb2009 release 1.10 banking workload design doc-
ument. http://wuw.spec.org/web2009/docs/design/
BankingDesign.html, Apr. 2009.

SUNDARARAJ, A. |., AND DINDA, P. A. Towards virtual net-
works for virtual machine grid computing. IRroc. of Virtual
Machine Research And Technology Sympogi8an Jose, Cali-
fornia, May 2004).

VMWARE, INC. vSphere Networking. http://pubs.
vmware.com/vsphere-50/topic/com.vmware.ICbase/
PDF/vsphere-esxi-vcenter-server-50-networking-
guide.pdf, 2011.

WANG, Y., KELLER, E., BISKEBORN, B., VAN DER MERWE,
J.,AND REXFORD, J. Virtual Routers on the Move: Live Router
Migration as a Network-Management Primitive.Rmoc. of ACM
SIGCOMM(Seattle, WA, Aug. 2008).

WHITE, B., LEPREAUY, J., SIOLLER, L., Riccl, R., Gu-
RUPRASAD, S., NEWBOLD, M., HIBLER, M., BARB, C., AND
JOGLEKAR, A. An integrated experimental environment for
distributed systems and networks. Mmoc. of USENIX OSDI
(Boston, MA, Dec. 2002).

WiLLIAMS , D., JAMJOOM, H., AND WEATHERSPOON H. The
Xen-Blanket: Virtualize Once, Run Everywhere Rroc. of ACM
EuroSyqBern, Switzerland, Apr. 2012).

Woob, T., RAMAKRISHNAN, K. K., SHENOY, P., AND VAN
DER MERWE, J. CloudNet : Dynamic Pooling of Cloud Re-
sources by Live WAN Migration of Virtual Machines. Proc. of
ACM VEE(Newport Beach, CA, Mar. 2011).

., GREENBERG

