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Abstract

Despite significant advances in enabling live virtual ma-
chine (VM) migration within a virtualized—cloud—
infrastructure,cross-cloudlive migration remains an ad
hoc, complex process. To create a network environment
in which live migration can occur, clouds are beginning
to expose virtual networks as a service. Connecting,
managing and maintaining membership and routing in-
formation for—possibly incompatible—virtual networks
as VMs migrate between clouds is non-trivial for both
cloud providers and cloud users. In this paper, we
presentVirtualWire, a system in which cloud providers
offer—instead of a virtual network abstraction—acon-
nect/disconnectprimitive that is much easier to man-
age. VirtualWire offers cloud users a consistent method
to create complex logical network topologies in which
the virtual network fabric itself is able to be elastically
stretched or live migrated within or between clouds.
Leveraging nested virtualization, we have implemented
and evaluated VirtualWire across third-party clouds, in-
cluding Amazon EC2, achieving cross-cloud live migra-
tion of VMs and network components with as low as 1.4 s
of downtime.

1 Introduction

Live migration has become an integral part of cloud in-
frastructure design. To offer live migrationas a service,
cloud providers1 must enable VMs from other clouds
to live migrate to their data centers. Live migration is
a hypervisor-level operation, requiring coordination be-
tween the sending and receiving host machines. De-

1We distinguish between cloudproviders and users. Cloud
providers manage the cloud, virtualized data center (e.g.,Amazon Elas-
tic Compute Cloud and Rackspace). Cloud providers also represent in-
frastructure administrators in large private clouds. Cloud users are the
consumers of the cloud infrastructure in the form of leased VMs. They
do not have hypervisor or root privileges to the physical infrastructure
that powers the cloud.

spite recent advances in enabling hypervisor-level con-
trol across third-party clouds [36], networking remains a
challenge for cross-cloud live migration.

Current live migration techniques are limited within a
layer 2 network in order to prevent VM IP addresses from
changing. Inside a single autonomous cloud data cen-
ter, network architectures (e.g., NetLord [25], VL2 [15],
and PortLand [26]) achieve scalable “virtual” layer 2 net-
works that enable flexible intra-cloud migration. Across
clouds, providers have begun to expose virtual network
abstractions that can seamlessly connect to private data
centers. For example, Amazon’s Virtual Private Cloud
(VPC) [1] lets users bring their private or public IP ad-
dresses to the cloud using an IPsec tunnel.

Unfortunately, the focus on providing a virtual net-
work abstraction does not automatically enable cross-
cloud live migration. Today, cloud providers must man-
age the associated control logic that specifies how pack-
ets are routed within a virtual network. Providers, for
example, may implement a distributed virtual switch or
embed control logic into a software defined network
(SDN) controller. Even emerging virtual networking
wire format standards like VXLAN [23], STT [12],
and NVGRE [30] assume the existence of a provider-
managed control plane. In all cases, providers must
also track to which—of potentially many—virtual net-
work(s) each VM belongs. When VMs are migrated,
the corresponding virtual networks must be appropriately
stretched or reconfigured.

Furthermore, for cross-cloud deployments, this
provider complexity does not eliminate the cloud user’s
task of network management. Especially during
migration—both live and offline—cloud users must keep
track of their virtual networks so that they can appropri-
ately stretch them into a new cloud. The number of vir-
tual networks that a cloud user must manage can be large.
An enterprise application, for example, often uses mul-
tiple VLANs to isolate its various tiers. Moreover, each
cloud may expose a slightly different network abstrac-
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tion, which may lack consistent support for important
network protocols or middlebox configurations [9,17].

Instead of a virtual network abstraction, we propose
that providers expose aconnect/disconnectprimitive
from which cloud users can build virtual networks. To
this end, we present VirtualWire. VirtualWire is a sys-
tem that couples every virtual network interface (vNIC)
with a point-to-point network tunnel. vNICs belong to
VMs that either implement servers or user-level network
components (e.g., routers, switches, middleboxes) sim-
ilar to VIOLIN [19]. Cloud users can construct com-
plex virtual networks by connecting pairs of vNICs to-
gether. Connections between vNICs are maintained even
as VMs migrate, eliminating any need for reconfigura-
tion inside guest VMs.

VirtualWire has two main advantages over provider-
supplied virtual network abstractions from a cross-cloud
migration perspective:

• Simplicity for Providers. With VirtualWire, the cloud
provider’s task is reduced from managing the virtual
networks’ control plane to ensuring efficient delivery
of network traffic across paired virtual interfaces (as
specified by the user). More importantly, it enables de-
centralized management of vNICs. As part of the VM
live migration process, the participating hosts (i.e., the
sending and receiving hypervisors) only need to ad-
just the affected pair of vNIC tunnel destinations, ef-
fectively stretching the tunnel.

• Consistency for Users.VirtualWire enables users to
completely define their virtual network. The cloud
user controls the protocols supported by the virtual net-
work and how traffic flows through middleboxes. The
user specifies the peerings between different vNICs of
virtual network components—once—in a process that
mimics the act of plugging networking cables into net-
work interface cards. The physical locations of all
network components and the details of the underlying
physical network are irrelevant to the user; network
components or servers can freely migrate without re-
configuration from the user.

To date, we have implemented VirtualWire in Xen [6]
to transparently intercept packets from virtual network
interfaces and tunnel them across the physical network.
Leveraging the Xen-Blanket [36], we have deployed Vir-
tualWire on Amazon EC2 (a third-party cloud) as well
as a private enterprise cloud environment. We have per-
formed live VM migration from our private cloud to
Amazon EC2—with no changes to VMs or the network
topology—incurring as low as 1.4 s of downtime. We
also demonstrate that VirtualWire is flexible enough to
support a 3-tier application with rigid network address
constraints between multiple firewall middleboxes onto

EC2, achieving performance within 9%2 of a native EC2
deployment.

In summary, VirtualWire makes three main contribu-
tions:

• a connect/disconnect primitive to enable virtual net-
works within and across clouds without requiring
providers to manage a virtual network abstraction,

• an application of nested virtualization to extend the
user’s virtual network across one or more third-party
clouds, and

• a demonstration of virtual network elasticity through
live VM migrations of virtual servers and net-
work components between our local setup and Ama-
zon EC2.

The rest of this paper is organized as follows. Sec-
tion 2 provides context with respect to related work. Sec-
tion 3 and Section 4 describe the design and implementa-
tion of VirtualWire, respectively. Section 5 evaluates Vir-
tualWire, including live VM migration between clouds;
Section 6 concludes.

2 Background and Related Work

Live migration [11, 27] is a common hypervisor-level
feature within a single virtualized environment. Live mi-
grationas a servicerequires the provider to expose an
interface in which hypervisors can transfer VMs to other
hypervisors on potentially different clouds. Using nested
virtualization [8,36], such an interface can be exposed on
today’s clouds. However, today’s live migration strate-
gies have stringent networking requirements. To enable
a VM to maintain its IP address, live migration is lim-
ited to a layer 2 network. In the context of related work,
we highlight requirements for enabling cross-cloud live
migration that drive the design of VirtualWire.

Data Center Architectures. Several virtual network-
ing architectures are built with VM migration in mind.
VL2 [15] and NetLord [25] create a virtual layer 2 net-
work abstraction that can scale to hundreds of thousands
of VMs, partially motivated by the perceived need for
flexibility in VM migration and assignment. Software
defined networking (SDN) [16,22,24,28] is emerging, in
which a network-wide control platform can enable net-
works to adapt to the new challenges presented by live
migration. However, these architectures have focused
on a single provider or administrative domain. From
a cross-cloud perspective, the underlying provider com-
plexity in managing the virtual network does not reduce

2The overhead is introduced by the nested virtualization layer,
which was needed to enable hypervisor level controls on EC2.
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the complexity perceived by the user, who must man-
age a virtual network across—potentially inconsistent—
abstractions.VirtualWire should simplify cloud providers
while offering users a consistent networking interface,
despite migration across clouds.

Stretching Across Clouds. Virtual Private Networks
(VPNs) are commonly used to extend private networks
into remote sites. CloudNet [37] relies on provider based
VPNs to connect data centers and implements optimiza-
tions to migrate VMs across the WAN. Similarly, Ama-
zon VPC [1] allows users to pick their own IP addresses
within a subnet connected to a private network via a
VPN. VNET [32] examines extending a layer 2 network
to a remote environment by using tunnels to a proxy.
More recently, vCider [4] and VPN-Cubed [5] use simi-
lar mechanisms to support layer 2 protocols in the cloud
and even provide some control over the network topol-
ogy, but require configuration in the guest operating sys-
tems. CloudSwitch [2] operates in an isolation layer that
avoids guest operating system configuration, but does
not facilitate the implementation of flow policies in the
cloud. Unfortunately, the lack of support for network-
ing features in the cloud, such as enforcing VLANs or
middlebox interposition, continues to present significant
migration challenges [9, 17]. Connecting clouds is not
enough.VirtualWire should support complex topologies
and low-level protocols across clouds.

Virtual Network Components in an Overlay. In order
to support complex topologies and low-level protocols,
overlays of virtual network components, such as VIO-
LIN [19], have been proposed. VINI [7] applies some
of the ideas of VIOLIN in a controlled, realistic setting
to create a shared network testbed. Emulab [35] also al-
lows users to specify arbitrary network topologies that
are emulated in software. In these systems, the over-
lay is largely static and not designed for live migration.
Migration is disconnected from the management of over-
lays and therefore constrained by how the overlay is con-
figured. VirtualWire should integrate migration into a
virtual network so that the network can automatically
stretch to anywhere a VM migrates.

Migrating Virtual Networks. Especially for large,
multi-tier deployments (e.g., enterprise applications),
live migration of network components with VMs as an
ensemble is necessary [20]. To this end, LIME leverages
SDN techniques and requires infrastructure providers
to implement support for migration in the SDN con-
troller. Individual virtual network components, particu-
larly routers, have been migrated in VROOM [34]. More
generally, a case has been made for network infrastruc-
ture providers to be completely decoupled from service
providers [14]. However, these architectures focus on
a single cloud provider.VirtualWire should provide sup-

Figure 1: VirtualWire

port for the live migration of virtual network components
across clouds without needing explicit coordination be-
tween providers.

3 VirtualWire

This section describes the high-level design of Virtual-
Wire, and highlights how providing a connect/disconnect
primitive from which users can implement their own vir-
tual network results in low management overhead. We
also discuss live migration and challenges in building an
efficient virtual network on VirtualWire.

A virtual network in VirtualWire has a split architec-
ture by design, illustrated in Figure 1. The cloud user
is responsible for configuring theuser layer, made up of
virtual network components, while using a simple API
to attachconnectorsbetween the virtual network inter-
faces (vNICs) on components. Connecters are optimized
network tunnels that maintain the virtual network topol-
ogy regardless of where virtual network components and
servers are located; the provider implements the connec-
tor abstraction in theprovider layer.

3.1 User Layer: Network Components

Similar to VIOLIN [19], in VirtualWire, users run
and configurevirtual network components, which are
VMs containing configurable software implementations
of switches, routers, and middleboxes. Many soft-
ware implementations of network components exist (e.g.,
Open vSwitch [28], Click router [21], and XORP [18]).
Even commercial vendors have started providing soft-
ware equivalents of their physical network components.
For example, Cisco has released the Nexus 1000V se-
ries of production virtual switches [10]. Although not
production, NetSim [3] contains software implementa-
tions of 42 routers and 6 switches. Similarly, the Olive
JUNOS implementation for training on Juniper devices
runs on FreeBSD.
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Figure 2: VirtualWire encapsulation

The use of virtual network components ensures that
a cloud user can consistently implement even complex
network semantics without provider support. From the
provider’s perspective, the combination of these com-
ponents comprise a cloud user’s virtual network in its
entirety, simplifying migration and management. How-
ever, virtualized network components are limited by the
performance of the underlying physical host and are un-
likely to perform like physical network components.3

Considerations when building efficient virtual networks
in VirtualWire are discussed in Section 3.5.

3.2 Provider Layer: Connectors

The provider links together vNICs on virtual network
components as specified by the user usingconnectors.
Connectors have twoendpoints, each bound to a vNIC.
The binding between endpoint and vNIC is configured
by anendpoint managerresiding on a hypervisor. This
binding does not change, even if a network component is
migrated to another hypervisor. On migration, the con-
figuration (e.g., tunneling destinations) of endpoints is
updated to ensure the virtual network topology is main-
tained (see Section 3.4).

Encapsulation. Connectors are layer-2-in-layer-3 net-
work tunnels. A layer 2 packet sent on a vNIC enters its
associated endpoint, which encapsulates the full packet
(with the entire MAC header, including VLAN tags) in a
UDP packet; the 44 byte header is shown in Figure 2.
The encapsulation used by endpoints is similar to the
wire format in VXLAN [23]; however, unlike VXLAN,
the header encodes a 32-bit connector ID instead of a net-
work segment (e.g., a VNI in VXLAN terminology) be-
cause the provider does not need to maintain a notion of

3For example, a physical switch may have 32 ports, all capableof
achieving 1 Gbps. An equivalent switch in VirtualWire may behosted
on a physical machine with a single 1 Gbps interface. The virtual
switch will still have 32 ports, but is now only capable of achieving
1 Gbps—in aggregate—due to the limitations of the physical interface.

Figure 3: Path of a packet in VirtualWire

network segments. The target IP address and port num-
ber correspond to the physical network address of the tar-
get endpoint manager. Upon receipt of a packet, the end-
point manager strips the outer headers, examines the con-
nector ID, and forwards the packet to the target endpoint.
Figure 3 details the path of a packet in VirtualWire. In
order to maintain the network topology, every endpoint
sends packets to exactly one other endpoint. If an end-
point is migrated, the migration process ensures the rele-
vant endpoint configuration is updated to address encap-
sulated packets to the correct endpoint manager (further
discussed in Section 3.4).

The extra 44 bytes added to each packet introduces a
risk of fragmentation. VirtualWire adopts the path MTU
discovery technique used by NVGRE [30] to enable a
server to deduce the reduced MTU and avoid fragmen-
tation of packets after encapsulation. Since encapsulated
packets are unreliable, it is possible that they may get
dropped by the network for a number of reasons, in-
cluding downtime during migration of a component or
endpoint. This is akin to the unreliability of Ethernet,
in which packets are delivered in best-effort fashion. If
greater reliability is desired, a reliable transport protocol
may be used to implement a connector.

Optimizations. Connectors between virtual network
components running on the same hypervisor are auto-
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matically collapsed by the endpoint manager. In partic-
ular, the endpoint manager configures the endpoints to
route packets directly to the co-located endpoint, rather
than encapsulating self-addressed packets (see Figure 3).
If, at a later time, one of the virtual network components
is migrated to a different hypervisor, the endpoint man-
ager re-enables encapsulation.

Extenders. Similarly, connectors also automatically ex-
tend across cloud networks and firewalls. Instead of ad-
dressing encapsulated packets directly to the recipient
endpoint manager, packets are rerouted to anextender.
An extender is a server (or set of servers) that both acts
as an endpoint manager and maintains a permanent VPN
tunnel to another cloud. Extenders are well known within
a provider; any endpoint manager within a cloud knows
of the extenders and how to use them to connect to end-
points on other clouds. As shown in Figure 3, an exten-
der may be local (co-located with an endpoint). Packets
arriving at an extender are automatically sent across the
VPN tunnel, where they enter a new endpoint that en-
capsulates the packet and sends it to the target endpoint
manager. From the point of view of the network compo-
nents, the extender is invisible: the two network compo-
nents remain logically connected. If the virtual network
components migrate to the same cloud, the extender will
no longer be used.

3.3 Connector Management

VirtualWire exposes a simple interface made up of two
operations,connect anddisconnect, which create and
destroy connectors between the vNICs on virtual servers
and network components. Similarly, VirtualWire ex-
poses aconnect anddisconnect for extenders. These
interfaces augment the typical VM creation and destruc-
tion interfaces exposed by cloud providers. Management
of endpoints and connectors is intrinsically decentral-
ized; no additional configuration database is required.

A virtual network created with VirtualWire can be
connected to an existing physical network using a phys-
ical network appliance called aVirtualWire gateway. A
VirtualWire gateway is a server with one or more physi-
cal network interfaces and VirtualWire endpoints. From
the point of view of the physical and virtual network
components on either side of the gateway, the gateway
is transparent: traffic sent down a network cable from
one component will arrive at the next component on the
same interface as if both were in the physical network.

3.4 Live Migration

As providers begin to support live migrationas a ser-
vice, they will expose APIs for their hypervisors to com-
municate with other hypervisors—perhaps on a different

cloud—to initiate migration and copy memory and meta-
data between them.4 For example, a cloud provider may
enable a cloud user to migrate a VM by specifying a des-
tination hypervisor address. VirtualWire augments this
mechanism to maintain the logical network topology as
the VM migrates.

In particular, the endpoint manager on each hypervi-
sor is integrated with its live migration mechanism. The
endpoint manager on the source hypervisor maintains a
number of connector endpoints for the migrating VM,
depending on the number of vNICs it has. During mi-
gration, the source copies the endpoint configurations to
the destination as part of the VM metadata. By defini-
tion, the source can also communicate with the hypervi-
sor(s) hosting the sister endpoint(s) (perhaps through one
or more extenders). The source copies information about
the destination to each so that every sister endpoints can
be updated. If the sister endpoint is on a different cloud
than the destination, both endpoints are configured to
communicate with the appropriate extender.

3.5 Building an Efficient Virtual Network

Live migration creates challenges for maintaining effi-
ciency in a virtual network, especially if the virtual net-
work crosses cloud boundaries. Two conflicting design
goals must be considered when building virtual networks
on VirtualWire.

Splitting Components. It may be difficult to effi-
ciently place shared network components to maximize
co-location if servers are migrating. For example, con-
sider a deployment containing a central switch between
two communicating pairs of VMs. If one pair of VMs
migrates to another cloud it may be more efficient to re-
place the switch with two switches and place one switch
in each cloud. Alternate, split versions of a switch, such
as a distributed virtual switch (e.g., VMware DVS [33]),
can be implemented in VirtualWire by connecting each
part of the DVS with VirtualWire connectors. Impor-
tantly, even if the user runs a distributed component, the
provider only manages endpoints, not a control plane.

Reducing Device Sprawl.Long chains of components
can cause convoluted and inefficient routing paths as
components or servers are migrated. For example, a
chain of switches may involve packets that originate at
one cloud, travel to a switch in another cloud, only to re-
turn to the next switch in the chain in the original cloud.
Such chains may be able to be collapsed into fewer com-
ponents in VirtualWire. For instance, a chain or tree
of switches may be able to be implemented as a single
big switch. However, collapsing components is at odds

4Alternately, nested virtualization enables hypervisor-level control
on third-party clouds [36] to expose such APIs today.
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Figure 4: Nested Virtualization

with splitting components (described above). To navi-
gate this tradeoff, ongoing work is considering live split-
ting and merging (collapsing) of virtual network compo-
nents [29].

4 Implementation

We have implemented VirtualWire on an enterprise
cloud, an academic testbed, and Amazon EC2. We aug-
ment existing hypervisor-level functions that provide the
basic VM migration mechanisms for a live migration ser-
vice. For Amazon EC2, where we do not have access to
the underlying hypervisor, we leverage nested virtualiza-
tion [8,36] (Figure 4).

4.1 Nested Virtualization Background

We leverage the Xen-Blanket [36] to deploy VirtualWire
across a mixture of public and private clouds. The Xen-
Blanket is an open-source nested virtualization system
consisting of a modified Xen [6] hypervisor that runs—
without special support—on top of a variety of cloud
providers or directly on hardware. The Xen-Blanket con-
tains the Xen live migration implementation that cooper-
ates with other Xen hypervisors to migrate a VM.

Guest VMs on the Xen-Blanket are assigned vNICs
that use paravirtualized Xen split (front- and back-end)
network drivers. Each guest vNIC is a front-end with
a corresponding back-end in the control domain (Do-
main 0) of the Xen-Blanket. All guest VM packets pass
through the back-end vNIC.

4.2 Network Components

We implement network components in Xen-Blanket
guest VMs. For example, Figure 5 shows two servers
connected to a switch component. The switch compo-
nent is implemented by running the standard Linux soft-
ware bridge in a Xen-Blanket guest VM configured with
two vNICs. To run a server or component VM on any
Xen-Blanket hypervisor on any cloud, we place virtual
disk images containing the root filesystem of VMs in

Figure 5: Implementation

a globally accessible NFS share.5 VMs on the Xen-
Blanket can be live migrated using Xen’s live migration
mechanism [11]; we discuss enhancements to it in Sec-
tion 4.5.

We relax the isolation of the VM for some network
components, like the Linux software bridge. Instead,
we implement the switch in Domain 0, as shown in Fig-
ure 6(a), and avoid two additional packet copies required
to transfer a packet into and out of a guest VM. Because
the switch is a simple component, migration is achieved
by remotely reconfiguring Linux bridges with thebrctl
command. However, complex network components can-
not be as easily implemented or migrated in Domain 0.

4.3 Connectors

Connector endpoints are bound to back-end guest vNICs
using a dedicated software bridge in the Xen-Blanket
Domain 0, as shown in Figure 5. Endpoint tunneling
is performed via the endpoint manager kernel module.
We implemented tunneling in a Domain 0 kernel module
to reduce the number of context switches required when
compared to a userspace implementation, such asvtun,
which uses the TAP/TUN mechanism. A kernel imple-
mentation is especially important on the Xen-Blanket be-
cause nested virtualization magnifies the cost of context
switches [36]. Inside the kernel module, each endpoint
has an associated socket and thread to listen for UDP
packets received on the external interface, but destined
for the endpoint. Outgoing packets are intercepted and
encapsulated in UDP packets as described in Section 3.2,
then sent through Domain 0’s external interface.

5Providing an efficient mechanism to access VM disk images from
any cloud is out of the scope of this paper.
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Figure 6: Implementation optimizations

If both endpoints of a connector are co-located on the
same Xen-Blanket instance, the endpoint manager in-
structs the endpoints to forgo encapsulation. Instead, the
back-end vNICs from the network components are con-
nected through a software bridge in Domain 0, called an
endpoint bridge. The configuration after collapsing one
endpoint is depicted in Figure 6(b). Endpoints are col-
lapsed even when a virtual network component is imple-
mented in Domain 0. Figure 6(c) shows the configuration
if all three VMs are co-located and the switch is imple-
mented in Domain 0.

Extenders are implemented with OpenVPN. Each
Xen-Blanket instance is configured with the location of
all extenders from the current cloud to all other clouds.
To improve performance, the extender is implemented in
Domain 0.

4.4 Connector Management

We implemented an interface in the/proc filesystem in
the endpoint manager kernel module, shown in Figure 7,
through which endpoints are controlled. This interface
provides a convenient mechanism to create and destroy
them as needed. It is also used by the local migration
process to update endpoints during a VM migration (Sec-

/* create a new endpoint N on instance A that receives
packets on AdrA and sends packets to AdrB */

echo "<N> <AdrA> <AdrB>" > /proc/vw/create

/* return current endpoint config */
cat /proc/vw/<N>
/* update endpoint send config (e.g. other end migrated) */
echo "<AdrC>" > /proc/vw/<N>
/* destroy the endpoint (e.g. this end migrated) */
echo "<N>" > /proc/vw/destroy

Figure 7: The proc interface to control VirtualWire end-
points.

tion 4.5). A VirtualWire Gateway is implemented as a
server with an interface to a physical network and one or
more connector endpoints.

4.5 Live Migration

We modified the local Xen live VM migration pro-
cess [11] to include endpoint migration. During live
migration, the source hypervisor instructs the destina-
tion hypervisor to create an empty VM container. Then,
the source iteratively copies memory to the destination,
while the migrating VM continues to run. At some point,
the source stops the VM and copies the final memory
pages and other execution state to the destination.

In VirtualWire, we modify this process in two ways.
First, when the destination creates the empty VM con-
tainer (during the pre-copy phase), it also creates a set
of endpoints that will encapsulate outgoing packets with
the correct VirtualWire header. It also creates a set of
bridges to bind the back-end vNICs of the migrating VM
to these newly created endpoints. The endpoint configu-
rations are supplied by the source and contain informa-
tion about the clouds where sister endpoints reside. If
sister endpoints reside on different clouds, the endpoints
are configured to route to an extender.

Second, during the stop-and-copy phase, the source
endpoint manager contacts the sister endpoints for all mi-
grating vNIC connectors. Once again, endpoint config-
urations (the address and cloud of the destination) are
supplied by the source. Each sister endpoint is updated,
using an extender if necessary. Finally, after migration
completes, the source deletes the original endpoints.

Unlike live VM migration today, a migrating VM does
not end up behind a different switch port from the per-
spective of the logical network. Thus, no unsolicited
ARPs need to be generated.

5 Evaluation

In this section, we first demonstrate cross-cloud live mi-
gration of VMs and network components from our local
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Downtime Duration

Non-nested 0.7 [0.4] 19.86 [0.2]
Nested 1.0 [0.5] 20.04 [0.1]
Nested w/ endpoints 1.3 [0.5] 20.13 [0.1]

Table 1: Mean [w/standard deviation] downtime (s) and
total duration (s) for local live VM migration

environment to Amazon EC2. Then, we show that Vir-
tualWire is flexible by evaluating a 3-tier enterprise ap-
plication with a complex network configuration on EC2.
Finally, we describe microbenchmarks and the perfor-
mance of VirtualWire under various optimizations.

5.1 Experimental Setup

To evaluate VirtualWire, we use resources at our local
institution as well as from Amazon EC2.

Local Testbed. In our local environment, we use up
to two physical machines connected by a 1 Gbps net-
work, each containing two six-core 2.93 GHz processors,
24 GB of memory, and four 1 TB disks. Each machine
runs Xen with 2 VCPUs and 4 GB of memory dedicated
to Domain 0. On this underlying system, we use HVM
instances configured with 22 VCPUs and 12 GB of mem-
ory to run Xen-Blanket and VirtualWire.

Amazon EC2. In Amazon EC2, we use up to six Clus-
ter Compute Quadruple Extra Large instances, each with
23 GB memory, 33.5 EC2 Compute Units, 1690 GB of
local instance storage, and a 10 Gigabit Ethernet between
instances.

Both environments use the Xen-Blanket patches for
nested virtualization. The Xen-Blanket Domain 0 is
configured with 8 VCPUs and 4 GB of memory. All
guests (DomUs) are paravirtualized instances configured
with 4 VCPUs and 2 GB of memory, and can run ei-
ther on a single layer of virtualization in the local envi-
ronment or nested within a Xen-Blanket instance. An
NFS server running at our local setup provides VM
disk images; VMs on Amazon EC2 access the NFS
server through a VPN tunnel. For most of the experi-
ments, we usenetperf to generate 1400 byte packets in
UDP STREAM and UDPRR modes for throughput and
latency measurements, respectively.

5.2 Cross-Cloud Live Migration

In this subsection, we evaluate the ability of components
and servers in VirtualWire to undergo live VM migra-
tion while maintaining the virtual network topology both
within a single cloud and between clouds. Because we

Downtime Duration

Local to Local 1.3 [0.5] 20.13 [0.1]
EC2 to EC2 1.9 [0.3] 10.69 [0.6]
Local to EC2 2.8 [1.2] 162.25 [150.0]

Table 2: Mean [w/standard deviation] downtime (s) and
total duration (s) for live VM migration

are unaware of other systems that enable cross-provider
live migration, we do not compare the performance of
migration in VirtualWire to other systems. For these ex-
periments, we migrate a VM that is continuously receiv-
ing netperf UDP throughput benchmark traffic from
another (initially co-located) VM. The network topol-
ogy includes a virtual switch, also co-located, between
the two VMs and implemented in Domain 0 for perfor-
mance. For each experiment, we report the average (and
standard deviation) application downtime and the total
time the migration operation took to complete from 6
identical runs. Application downtime is calculated by ex-
amining periodic output from thenetperf benchmark.6

The performance time of live migration of a VM (re-
ceivingnetperf UDP traffic) between two machines in
our local setup is shown in Table 1. The VM and its
netperf partner VM were both run on a single layer of
virtualization (non-nested) or nested setup (nestedand
nested w/ endpoints) before and after the migration. To
isolate the nesting overhead from endpoint migration
overhead, VirtualWire connectors are not used between
the two VMs in thenon-nestedandnestedexperiments;
instead, the physical network is bridged. We find a 43%
increase in downtime and an 18% increase in total dura-
tion due to nesting. The added task of migrating Virtual-
Wire endpoints introduces an additional 30% increase in
downtime, but a negligible increase in total duration.

Table 2 quantifies the performance of live migra-
tion across clouds while maintaining the virtual network
topology using a VirtualWire connector. We compare the
performance of single-cloud live migration within our
local nested setup (Local to Local) and within Amazon
EC2 (EC2 to EC2) to multi-cloud migration between the
two (Local to EC2). Within one cloud, local or EC2, the
latency between the instances is within 0.3 ms, whereas
across clouds it is about 10 ms. VPN overhead limits
throughput across clouds to approximately 230 Mbps.
The 10 Gbps network between our EC2 instances leads
to significantly reduced total migration time when com-
pared to local; however, the downtime was comparable.
Live migration of a VM (receivingnetperf UDP traf-
fic) between our local nested setup and Amazon EC2 has

6The frequency of the periodic output is set to 0.1 s, so we cannot
measure downtime less than 0.1 s.
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Figure 8: Throughput over time between two VMs mi-
grating to Amazon EC2
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Figure 9: Latency over time between two VMs migrating
to Amazon EC2.

a downtime of 2.8 s and a total duration of 162.25 s on
average, but variation is high: the duration ranged from
48 s to 8 min. For an idle VM, the performance of the
network between machines has little effect: the down-
time during live migration between two local machines
and from local to EC2 is 1.4 s on average.

We ran two more experiments,7 shown in Figure 8 and
Figure 9, to identify the throughput and latency over time
for the test deployment as the recipient VM and then the
switch and the sender VM were live migrated to Ama-
zon EC2, respectively. Migration of the switch did not
affect throughput because its Domain 0 implementation
was trivial to migrate. As expected, significant degrada-
tion in the throughput and latency occurs when not all
components are co-located on the same cloud.

5.3 Supporting Complex Networks

In this subsection, we show that VirtualWire can support
a complex network topology of an application with mul-
tiple tiers and quantify the performance implications. As
an application, we run the RUBiS [13] benchmark with
three VMs representing the Web tier, application server
tier, and database tier, respectively. To better represent
the complexity that can arise in enterprise applications,
we add two VMs running software firewalls (iptables)
in between each tier. Like many real applications, the

7We could not measure both the throughput and latency from a sin-
gle experiment usingnetperf.
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Figure 10: Performance of RUBiS application on EC2

VMs each have a hardcoded configuration—route table
entries and IP addresses—that introduces constraints that
necessitate a flexible virtual network.

Figure 10 shows the number of “good requests”8 us-
ing the RUBiS application under various client load (si-
multaneous sessions). We examine four scenarios. The
first two scenarios require manual modifications to the
network configuration of each VM, but represent best-
case scenarios in terms of application performance. The
baselineis obtained by running each VM directly in an
Amazon EC2 medium instance. Thenested baselineruns
an identically provisioned VM inside a Xen-Blanket in-
stance, and therefore represents a best-case given nested
virtualization overheads.

The other two scenarios are configurations of Virtual-
Wire and require no modifications to the guest VMs. The
first scenario,VirtualWire naı̈ve, introduces a sixth VM
that runs a virtual switch. Connectors are configured be-
tween each of the five VMs and the switch VM. The sec-
ond scenario,VirtualWire distributed, replaces the switch
VM with a distributed switch component as discussed
in Section 3.5 and further evaluated in Section 5.6. In
this configuration, VirtualWire achieves within 4% of the
nested baseline and 9% of the baseline.

5.4 Microbenchmarks

Nesting Overhead.We isolate the overhead VirtualWire
incurs due to Xen-Blanket nested virtualization using a
netperf process in the Domain 0 of one physical ma-
chine across the 1 Gbps link in the local setup. We iden-
tify the throughput, latency and CPU utilization when
network packets are received by a single-layer Domain 0
(single dom0), inside a guest running on the first layer
(single domU), on the Xen-Blanket Domain 0 (nested
dom0), or inside a guest running on the Xen-Blanket
(nested domU). UDP throughput is maintained at line
speed in all cases, while TCP throughput decreases by
6.7% fornested domU. However, as shown in Table 3,

8SPECweb2009, a similar benchmark, defines good requests as
those which complete with a latency within 2000 ms [31].
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Latency Agg. CPU Util.

Single Dom0 63 µs 61%
Single DomU 86 µs 88%
Nested Dom0 96 µs 97%
Nested DomU 210µs 196%

Table 3: Network latency comparison in nested and non-
nested virtualization settings
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Figure 11: Tunnel throughput comparison

the latency increases sharply with a corresponding in-
crease in CPU utilization due to extra packet copies and
context switching.

Connectors.VirtualWire connectors are implemented in
a kernel module and therefore avoid the high penalty for
context switches experienced in the Xen-Blanket [36].
Figure 11 compares the performance of connectors with
various software tunnel packages. On our local—both
nested and non-nested—1 Gbps setup, we measure the
UDP performance of a VM sending data to another VM
through the tunnel. The baseline is a measurement of
the direct (non-tunneled) link between the VMs. The
kernel-module approach of VirtualWire connectors pays
off: while connectors increase throughput by a factor
of 1.55 over the popular open-source tunneling software
vtun in a non-nested scenario, it achieves a factor of 3.28
improvement in a nested environment.

Endpoint Scalability. In VirtualWire, a network com-
ponent with many ports, such as a switch or router cor-
responds to a DomU with many virtual network inter-
faces and many endpoints. To measure the scalability
of endpoints, we increase the number of interfaces with
endpoints in the DomU and run several simultaneous
netperfUDP throughput tests over each connector. The
results are shown in Figure 12. The 1 Gbps bandwidth
becomes split between the individual connectors, but in
aggregate remains high for at least 16 endpoints.

Extenders. VirtualWire uses OpenVPN to create exten-
ders so that connectors can span clouds. Table 4 shows
the performance (measured withnetperf) between in-
stances on our local nested setup or EC2 with and with-
out extenders. As previously discussed (Figure 11),
OpenVPN introduces significant overhead; when used
as an extender, throughput and latency suffered by up
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Figure 12: Scalability of VirtualWire endpoints in a
nested Domain 0

Connector w/o Extender Connector w/ Extender

Throughput Latency Throughput Latency

Local to Local 929.52 Mbps .240 ms 233.00 Mbps .300 ms
EC2 to EC2 1012.80 Mbps .270 ms 230.83 Mbps .310 ms
Local to EC2 n/a n/a 239.96 Mbps 10 ms

Table 4: Performance of connectors with and without ex-
tenders

to 25%. Across clouds, where extenders must be used,
we also see high latency. This result underscores the im-
portance of co-locating heavily communicating VMs on
a single cloud, rather than across clouds when possible.

5.5 Component Chain Length

We examine the effects of chain-length within a Virtual-
Wire network topology on throughput and latency with
and without optimizations. We restrict our experiment
to a single physical machine in the local environment to
eliminate network congestion and jitter from the results.
We vary the number of switches in the VirtualWire topol-
ogy between thenetperf endpoints. The switches are
configured in a chain: each switch has two ports, while
the server VMs have a single interface.

We first examine the case in which components are on
different instances. We run five Xen-Blanket instances
on a single physical machine, with 4 GB of memory
and 4 VCPUs each, each hosting one VM. Figure 13(a)
and Figure 13(b) show that, as expected, the throughput
slightly decreases and the latency linearly increases as
the chain length increases. By dropping all of the switch
VMs into the Domain 0 of their respective Xen-Blanket
instances, we found throughput was maintained with at
least three switches on the path while latency was re-
duced from approximately 237µs to 119µs per switch.

If components share an instances, endpoints are col-
lapsed and encapsulation is unnecessary. To evaluate this
optimization, we run a single Xen-Blanket instance with
14 GB of memory and 22 VCPUs so that it can sup-
port up to five guests and Domain 0. Figure 14(a) and
Figure 14(b) show the throughput and latency between
the two servers with up to three switch VMs interpos-
ing on the packets in four configurations: either encapsu-
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Figure 13: Effects of component chaining on throughput
and latency

lating or collapsing endpoints, each with DomU or Do-
main 0 switches. By avoiding encapsulation, endpoint
collapse reduces latency by about 135µs per switch.
Combined with Domain 0 switches, good performance
is maintained for all evaluated chain lengths. These re-
sults suggest that beyond co-locating heavily communi-
cating components on the same cloud, VirtualWire de-
rives significant benefit from co-locating components on
the same instance.

5.6 Splitting Components

In this subsection, we demonstrate the performance ad-
vantages of splitting bottleneck network components.
We runnetperf between four server VMs on four EC2
Xen-Blanket instances. All VMs are connected to a vir-
tual switch component running in Domain 0 on a fifth
EC2 Xen-Blanket instance. Traversing the switch, each
pair of VMs can achieve throughput of 1.39 Gbps on av-
erage. If two flows are active at the same time, through-
put is split between the two flows, dropping them to
720.5 Mbps each.

We split the virtual switch component by by run-
ning a Linux bridge on each of the four EC2 Xen-
Blanket instances and manually linking them (with con-
nectors) and configuring them (withebtables) to act as
a single switch. The split version of the virtual switch
avoids the bottleneck encountered with a centralized vir-
tual switch component. In this case, each pair of VMs
achieve throughput of 1.77 Gbps on average regardless
of whether one or two flows are active.
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Figure 14: Effects of endpoint collapse and Domain 0
optimization in co-located component chains

6 Conclusion

Advances in virtual networking within clouds to sup-
port live migration do not directly apply across clouds.
Despite the complexity incurred by providers to offer
virtual network abstractions, cloud users are ultimately
responsible for ensuring packets flow correctly through
clouds and virtual networks. We have presented Virtual-
Wire, a system that consistently enables expressive vir-
tual networks across clouds while reducing provider in-
volvement to the intrinsically decentralized task of man-
aging pairs of vNICs. With VirtualWire, we have live
migrated servers and network components to EC2, expe-
riencing as low as 1.4 s of downtime. VirtualWire sup-
ports complex network topologies: a 3-tier application
with address and middlebox requirements runs on EC2
without modification, maintaining within 9% of the per-
formance of a native deployment. The inherent elasticity
of VirtualWire—the ability to live migrate any network
component in a virtual network—creates opportunities
for placement optimizations and is well-suited to increas-
ingly elastic cloud workloads.
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