
TOWARDS A PROGRAMMABLE DATAPLANE

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Han Wang

May 2017

c© 2017 Han Wang

ALL RIGHTS RESERVED

TOWARDS A PROGRAMMABLE DATAPLANE

Han Wang, Ph.D.

Cornell University 2017

Programmable network dataplanes can significantly improve the flexibility and func-

tionality of computer networks. This dissertation investigates two building blocks of

network dataplane programming for network devices: the packet processing pipeline

and network device interface. In the first part of the dissertation, we show that design-

ing packet processing pipelines on hardware can be fast and flexible (programmable).

A network dataplane compiler and runtime is presented that generates a custom FPGA

dataplane designed and built from a dataplane programming language called P4 (pro-

gramming protocol independent packet processors). P4FPGA generates designs that can

be synthesized to either Xilinx or Altera FPGAs. We have benchmarked several repre-

sentative P4 programs, and the experiments show that code generated by P4FPGA runs

at line-rate at all packet sizes with latencies comparable to commercial ASICs. In the

second part of the dissertation, we present a programmable network interface for the net-

work dataplane. We show that a software programmable physical layer (programmable

PHY) can capture and control the timing of physical layer bits with sub-nanosecond

precision greatly increasing precision in network measurements. The benefits of a pro-

grammable PHY is demonstrated with an available bandwidth estimation algorithm and

a decentralized clock synchronization protocol that provides bounded precision where

no two clocks differ by more than tens of nanoseconds.

BIOGRAPHICAL SKETCH

Han Wang attended the University of Auckland from 2003 to 2007 for his undergradu-

ate studies in Computer Systems Engineering. Han spent a few months working as an

embedded system software engineer before starting his PhD program in Electrical and

Computer Engineering in Cornell University in 2008. He spent the first two years work-

ing with Professor Francois Guimbretiere on low power embedded system design before

joining Hakim Weatherspoon’s group to focus on system and networking research. In

2013 and 2014, Han spent two summers at Nicira/VMware working on Software De-

fined Networking (SDN) controller and dataplane projects. In 2014 and 2015, Han

Wang helped building the initial prototypes that form the basis of Waltz Networks Inc

with Kevin Tang and Nithin Michael. In 2016, Han Wang accepted a position at Barefoot

Networks Inc to pursue what he believed as the next generation programmable switch

ASICs and compiler technology.

iii

for my family

iv

ACKNOWLEDGEMENTS

First, I would like to express my deepest gratitude to my advisor, Hakim Weatherspoon,

who has profoundly influenced my life at Cornell. I have been extremely lucky to have

an advisor who put enormous trust and confidence into my ability, who offered unpar-

alleled guidance for me to become an independent researcher, and who provided the

complete freedom for me to pursue exciting ideas. I could not ask for more from an

advisor.

My work wouldn’t be possible without my wonderful collaborators. I would like to

thank Ki Suh Lee, for his extrodinary ability in system programming and his meticulous

attention to details. Without him, the SoNIC project would never be possible. Hyun

Tu Dang and Robert Soule are the co-authors of the P4Paxos project. Thanks to Tu

for taking the leap-of-faith to use my P4 compiler. Thanks to Robert for being a great

collaborator and a great advisor. His help on my writing and presentation skills have

been invaluable in the late stage of my PhD career. Jamey Hicks introduced me to Blue-

spec and Connectal, which has been enormously helpful for the development P4FPGA.

Thanks to Jamey for his unreserved help and guidance during my visit to MIT and after

I returned to Cornell.

I would like to thank Hakim Weatherspoon, Emin Gun Sirer, Rajit Manohar for

serving on my thesis committee, and giving me valuable feedback on the works.

Kevin A. Tang, Nithin Michael and Ning Wu have been another source of inspira-

tion for my PhD career. Thanks to Kevin and Nithin for giving me the opportunity to

participate in their early endeavors of Waltz Networks Inc. The experience of working

with an early stage start-up is an invaluable lesson.

I would like to thank Alan Shieh and Mukesh Hira for taking me as an intern at

VMWare networking group in Palo Alto. Thanks to Baris Kasikci, Jeff Rasley for being

wonderful friends, team mates at VMWare. I enjoyed the brainstorming, and lunch

v

discussions.

I am gratefully to many friends at Cornell. Songming Peng, Yuerui Lu, Han Zhang,

Pu Zhang, Xi Yan, Ryan Lau, Weiwei Wang, Jiajie Yu, Jiahe Li, Qi Huang, Zhiming

Shen, Weijia Song, Haoyan Geng, Erluo Li, Zhefu Jiang, Qin Jia, and too many others

to mention. I cannot forget all the parties, game nights, mid-night conversations we have

had. You made my life at Ithaca much more fun.

Last I would like to thank my family. I thank my parents, dad Xijin Wang, mom

Qiaofeng Li, for their enduring love, support and belief, without which I would not have

finished this journey. I thank my wife Fan Zhang, for her love and faith in me through

the ups and downs of my PhD career. It is the optimism and happiness from her that

drives me through the long journey. I dedicate this dissertation to them all.

vi

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vii
List of Tables . xi
List of Figures . xii

1 Introduction 1
1.1 Network Dataplane Programming . 2
1.2 Problems with Existing Network Dataplanes 5
1.3 The Rise of Programmable Network Dataplanes 7
1.4 Challenges in the Programmable Dataplane Design 9

1.4.1 Lack of Programmable Network Dataplanes: Packet Processing
Pipeline . 9

1.4.2 Lack of Programmable Network Dataplanes: Network Interface 11
1.5 Contributions Towards a Programmable Network Dataplane 12
1.6 Organization . 13

2 Scope and Methodology 15
2.1 Scope: Understanding the Network Dataplane 15

2.1.1 Dataplane Programming . 16
2.1.2 Network Protocol Stack . 18
2.1.3 Fast and Flexible Packet Processors 22
2.1.4 Precise Packet Timing Control with a Programmable PHY . . . 26

2.2 Methodology . 28
2.2.1 Systems . 28
2.2.2 Evaluation . 30

2.3 Summary . 33

3 Towards a Programmable Network Dataplane: P4FPGA and Pro-
grammable Packet Processing Pipelines 34
3.1 Background . 36
3.2 Design . 41

3.2.1 Programmable Pipeline . 43
3.2.2 Fixed-Function Runtime . 46
3.2.3 Control Plane API . 48
3.2.4 Extension . 49

3.3 Implementation . 50
3.3.1 Optimization . 50
3.3.2 Prototype . 53

3.4 Evaluation . 54
3.4.1 Case Studies . 55

vii

3.4.2 Microbenchmarks . 58
3.5 Application: Hardware Accelerated Consensus Protocol 67

3.5.1 Background . 68
3.5.2 Design . 70
3.5.3 Discussion . 78

3.6 Summary . 80

4 Towards a Programmable Network Dataplane: SoNIC and Programmable
PHYs 84
4.1 Design . 86

4.1.1 Access to the PHY in software 86
4.1.2 Realtime Capability . 87
4.1.3 Scalability and Efficiency . 89
4.1.4 Precision . 90
4.1.5 User Interface . 90
4.1.6 Discussion . 93

4.2 Implementation . 93
4.2.1 Software Optimizations . 94
4.2.2 Hardware Optimizations . 97

4.3 Evaluation . 101
4.3.1 Packet Generator . 101
4.3.2 Packet Capturer . 103
4.3.3 Profiler . 105

4.4 Application: Measuring Available Bandwidth 106
4.4.1 Background . 108
4.4.2 Design . 112
4.4.3 Implementation . 119
4.4.4 Evaluation . 121

4.5 Application: Precise Clock Synchronization 141
4.5.1 Background . 142
4.5.2 Design . 147
4.5.3 Implementation . 155
4.5.4 Evaluation . 158

4.6 Summary . 165

5 Related Work 166
5.1 Programming Network Elements . 166

5.1.1 Hardware . 166
5.1.2 Software . 166
5.1.3 Language . 167

5.2 Network Applications . 169
5.2.1 Consensus Protocol . 169
5.2.2 Timestamping . 170
5.2.3 Bandwidth Estimaton . 171

viii

5.2.4 Clock Synchronization . 173

6 Future Direction 176
6.1 Rack-scale Computing . 176
6.2 Scaling to 100G . 177
6.3 Packet Scheduling . 177
6.4 Distributed and Responsive Network Control Plane 178

7 Conclusions 179

A Network Concepts 181
A.1 Networking Basic Terminology . 181
A.2 Network Layering Model . 182
A.3 Packet Encapsulation . 183
A.4 Switch and Router . 184

B IEEE 802.3 Standard 186

C Language and Frameworks 190
C.1 Bluespec System Verilog . 190
C.2 Connectal Framework . 191

C.2.1 Top level structure of Connectal applications 192
C.2.2 Development Cycles . 193

D FPGA Implementation 195
D.1 P4FPGA Hardware Implementation 195

D.1.1 NetFPGA SUME . 195
D.1.2 Hardware Software Interface 198
D.1.3 Packet Processing Pipeline Templates 202
D.1.4 Code Generation . 207

D.2 SoNIC Hardware Implementation . 215
D.2.1 Hardware Overview . 215
D.2.2 PCI Express . 216
D.2.3 Transceivers . 218
D.2.4 DMA Engine . 219
D.2.5 Ring Buffer . 221
D.2.6 BlockSync and Gearbox . 227

D.3 DTP Hardware Implementation . 235
D.3.1 Altera DE5 . 235
D.3.2 Physical Layer Implementation 235
D.3.3 Control Interface . 238
D.3.4 Bluespec Implementation . 238

E Glossary of Terms 249

ix

Bibliography 254

x

LIST OF TABLES

2.1 Dell server specifications from year 2008 to 2016, Xeon CPUs in 2008
does not have per-core L2 Cache, instead it uses per-socket L3 Cache. . 22

2.2 Broadcom Trident-series switch ASIC specification from year 2008 to
2016 . 23

2.3 Xilinx Virtex-series FPGA specification from year 2008 to 2016 24

3.1 Example applications compiled by P4FPGA and lines of code (LoC)
in P4 and Bluespec. l2l3.p4 implements a L2/L3 router, mdp.p4 im-
plements a variable packet length, financial trading protocol parser,
paxos.p4 implements a stateful consensus protocol. 55

3.2 Processing time breakdown, cycles @ 250MHz. 57
3.3 Latency comparing to vendors. The numbers of cut-through and store-

and-forward switches are from [193] 57
3.4 Area and frequency of fixed function runtime. 65
3.5 BCAM and TCAM Resource Utilization on Virtex 7 XCVX690T,

which has 1470 BRAM blocks, 866400 Flip-flops and 433200 LUTs.
We show resource utilization as percentage as well as actual amount of
resource used. 65

4.1 DMA throughput. The numbers are average over eight runs. The delta
in measurements was within 1% or less. 99

4.2 Parameter setting for existing algorithms. G is the gap between packet
trains. R is the rate of probe. N is the number of probe packets in each
sub-train. D is the gap between each sub-train. 117

4.3 Application Programming Interface. 121
4.4 IPD and IPG of uniformly spaced packet streams. 126
4.5 Estimation with different probe train length. 131
4.6 Estimation results with different probe packet size. 131

D.1 DMA Memory Page Layout . 223

xi

LIST OF FIGURES

2.1 Different types of bits on dataplane, green color represents inter-packet
gap, red color represents packet header, yellow color represents packet
payload. 16

2.2 A programmable protocol parser that can parse financial trading proto-
col at high speed and low latency. 17

2.3 A programmable dataplane that can pace packets at sub-nanosecond
precision. 17

2.4 Header definitions for MDP.p4. 19
2.5 IEEE 802.3 10 Gigabit Ethernet Network stack. 20
2.6 FPGA development boards used for our research. 31
2.7 Our path on the National Lambda Rail. 31
2.8 Simple evaluation setup. 32

3.1 Subset of a P4 program to count UDP packets. 38
3.2 Example P4 Abstract Architecture. 39
3.3 P4FPGA Framework Overview. 41
3.4 P4FPGA Runtime and Pipeline. 42
3.5 Application throughput for L2L3, MDP and Paxos. 59
3.6 Runtime forwarding performance in gigabits per second (left) and mil-

lions packets per second (right) with a simple forwarding application
on a 6-port switching architecture. 61

3.7 Parser Latency v.s. Number of Headers parsed 62
3.8 Parser Throughput v.s. Number of Headers parsed 62
3.9 Processing latency versus number of tables 63
3.10 Pipeline Latency v.s. Number of Actions. 64
3.11 The Paxos protocol Phase 2 communication pattern. 68
3.12 A switch-based Paxos architecture. Switch hardware is shaded grey,

and commodity servers are colored white. 70
3.13 Paxos packet header and parsers. 74
3.14 Coordinator code. 75
3.15 Acceptor code. 83

4.1 Example usages of SoNIC . 88
4.2 Packet Generator and Capturer. 91
4.3 SoNIC architecture. 92
4.4 Throughput of packing . 96
4.5 Throughput of different CRC algorithms. 96
4.6 Throughput of packet generator and capturer. 102
4.7 Comparison of packet generation at 9 Gbps. 103
4.8 Comparison of timestamping. 105
4.9 IPDs of Cisco 4948 and IBM G8264. 1518B packets at 9 Gbps. 106
4.10 Usage of bandwidth estimation . 110

xii

4.11 Comparison of traffic pattern before and after passed through middlebox 115
4.12 Generalized probe train model. 116
4.13 MinProbe Architecture. 120
4.14 National Lambda Rail Experiment. 122
4.15 Controlled Experiment Topologies. 123
4.16 The time series and wavelet energy plots for cross traffic used in con-

trolled experiments. Figure 4.16a shows a time series of a CAIDA
trace in three different time scales: 10ms, 100ms and 1s. Coarser
time scale means longer averaging period, hence less burstiness. Fig-
ure 4.16b shows the corresponding wavelet energy plot for the trace
in Figure 4.16a. Figure 4.16c shows three different traces with differ-
ent traffic burstiness of the same time scale. Figure 4.16d shows the
corresponding wavelet energy plot, with higher energy indicating more
burstiness. 124

4.17 Available bandwidth estimation in a dumb-bell and parking-lot topol-
ogy under CBR traffic. Both cross traffic and probe traffic share one
bottleneck with the capacity of 10Gbps. The x-axis represents the
actual available bandwidth of the bottleneck link. The y-axis rep-
resents the estimation by MinProbe . This evaluation demonstrates
MinProbe ’s ability to accurately measure the available bandwidth and
achieve the estimation with minimal probing overhead. 127

4.18 Scatter-plot showing the queuing delay variance of probe packets ver-
sus the probe rate. The cross traffic rate are constant at 1Gbps, 3Gbps,
6Gbps and 8Gbps. We used probe with N=20, R=[0.1:0.1:9.6]Gbps,
G=10us, D=4ms. 128

4.19 The distribution of probe packet sizes from the CAIDA trace. 132
4.20 Estimation with probe packets drawn from the CAIDA trace. 133
4.21 Bandwidth estimation accuracy with different cross traffic burstiness.

On y-axis, we turn the knob from no clustering to batching. On x-axis,
we turn the knob on cross traffic packet size distribution from uniform
distribution to log-normal distribution. We plot the graph for different
cross traffic rate: 1Gbps, 3Gbps, 6Gbps and 8Gbps. 135

4.22 Bandwidth estimation of CAIDA trace, the figure on the left is the raw
data trace, the figure on the right is the moving average data. 136

4.23 Measurement result in NLR. 137
4.24 Software Routers do not exhibit the same fidelity as MinProbe 139
4.25 Estimating Available Bandwidth on different switches. 141
4.26 Common approach to measure offset and RTT. 144
4.27 Clock domains of two peers. The same color represents the the same

clock domain. 144
4.28 Low layers of a 10 GbE network stack. Grayed rectangles are DTP

sublayers, and the circle represents a synchronization FIFO. 156
4.29 DTP enabled four-port device. 156
4.30 Evaluation Setup. 158

xiii

4.31 Precision of DTP and PTP. A tick is 6.4 nanoseconds. 160
4.32 Precision of DTP daemon. 161

A.1 Encapsulation of data as it goes down the network stack. 184
A.2 Network Dataplane Built with Endhosts, Switches and Routers. 185

B.1 IEEE 802.3 10 Gigabit Ethernet Network stack. 187
B.2 IEEE 802.3 64b/66b block format. 188

D.1 Cable Pin-out to use GPU power source for PCI Express Power Con-
nector. 196

D.2 P4FPGA Clock Domains. 197
D.3 Simple Connectal Example. 198
D.4 Paxos Request Interface Definition in Connectal. 199
D.5 Paxos Indication Interface Definition in Connectal. 200
D.6 An example packet header in P4FPGA in Bluespec. 203
D.7 Parser implementation. 204
D.8 Match table implementation. 206
D.9 Load State Rule Generation. 209
D.10 Extract State Rule Generation. 210
D.11 Collect All Generated Rules to State Machine. 210
D.12 Match Table Typeclasses and Instances. 212
D.13 Generated Control Flow. 214
D.14 SoNIC PCI Express Configuration. 217
D.15 SoNIC PMA Configuration. 220
D.16 SoNIC DMA Descriptor Format. 222
D.17 Rx Circular Ring. 224
D.18 Tx Circular Ring. 226
D.19 BlockSync State Machine. 228
D.20 BlockSync State Machine Output Transition. 229
D.21 BlockSync State Machine Next State Computation. 230
D.22 40 bit to 66 bit gearbox logic. 232
D.23 66 bit to 40 bit gearbox logic. 234
D.24 DTP Top Level Module in Bluespec. 239
D.25 DTP Control API definition in Connectal. 240
D.26 DTP State Machine. 241
D.27 DTP INIT State Implementation. 242
D.28 DTP SENT State and SYNC State Implementation. 242
D.29 DTP Beacon Message Generation. 243
D.30 DTP Delay Measurement Implementation. 244
D.31 DTP Transmit Path Implementation. 245
D.32 DTP Receive Path Implementation. 247
D.33 DTP Timestamp Comparison Logic. 248

xiv

CHAPTER 1

INTRODUCTION

Computer networks are critical to our society. They are the basis of large scale dis-

tributed applications, such as search engines, e-commerce, and social networks, which

have profoundly changed how we access information and interact with each other. These

applications are hosted in data centers, where a large group of networked computer

servers are connected by large-scale data center networks. Further, emerging new appli-

cations, such as machine learning [140], and big data processing [134] are implemented

in data centers. These data center networks, and networks in general, must be flexible

to cope with new system architectures, higher performance requirements and stringent

application demands.

The part of the network that performs all the heavy lifting is the network dataplane.

The network dataplane forwards and processes packets. Given the demands of continual

technological development, a network dataplane needs to be fast, and needs to evolve

over time. But currently, the dataplane is not directly accessible by network developers,

operators or programmers. Instead, the programming to evolve the network has to go

through a layer of software called the control plane. The control plane is typically

co-located with the dataplane in the same network device (e.g. in a router). Enabling

programmable access to the network dataplane is the focus of this dissertation.

This dissertation represents a step towards identifying and addressing the challenges

of designing a framework for programmable dataplanes, which can significantly im-

prove the flexibility and functionality of networks. To this end, we investigate two

building blocks of the network dataplane programming for network devices: the packet

processing pipeline and network device interface. We asked the research question: how

can we build a programmable dataplane to improve network measurement, enable novel

1

network functionality, and accelerate development time from concept to prototype? We

explore this question with two approaches: a programmable dataplane that automates

generation of the network dataplane from a high-level dataplane programming language;

and a programmable network interface that allows precise control and measurement of

packet timing.

1.1 Network Dataplane Programming

Dataplane programming is distinct from control plane programming. The former en-

ables programming of the entire network while the latter enables programming network

devices through interfaces exposed by control plane software. In order to illustrate the

value of network dataplane programming, we discuss some concrete examples that are

not possible through control plane programming alone.

Rapid Prototyping of Protocols Data center networks are often under one adminis-

trative domain [4], which means a cloud provider, such as Google, Amazon, or Facebook

can design their own network hardware and protocol suite to optimize for their network

use cases. However, if a custom protocol cannot be supported by the network dataplane,

deployment of custom protocols becomes difficult. The history of VxLAN (Virtual eX-

tensible LANs) protocol deployment is a good example [131]. As the name VxLAN

implies, the technology is meant to provide the same services to connected Ethernet end

systems that VLANs (Virtual Local Area Network) do, but in a more extensible man-

ner. Compared to VLANs, VxLANs are extensible with regard to scale of the network,

and extensible with regard to the reach of their deployment. The idea of VxLAN was

proposed initially in 2011 in a IETF (Internet Engineering Task Force) draft [131], as

a method to efficiently support network virtualization at data center scale. However,

2

an efficient implementation of VxLAN in a router (or switch) ASIC (Application Spe-

cific Integrated Circuit) was not available until 2014 [187], which inevitably affected the

adoption of the new technology. A programmable dataplane allows network operators

to rapidly prototype new protocols without waiting for the protocol to be fabricated into

a commodity switch ASIC.

Accelerating Distributed Applications Data centers are built with hundreds of thou-

sands of servers and network switches, with large distributed applications running on top

of the servers. This is what we call the cloud. Increasingly, cloud providers are mov-

ing towards adding accelerators, e.g., Graphical Processing Units (GPUs) [97], Field

Programmable Gate Arrays (FPGAs) [43], Tensor Processing Units (TPUs) [201] to

the cloud, to improve the performance of cloud applications, such as machine learning,

video encoding, or artificial intelligence [140]. It is interesting to ask if the network

dataplane can accelerate distributed applications, offloading work from the servers. For

example, researchers have demonstrated how the Paxos distributed consensus protocol

can be added to the network by implementing a portion of the protocol in network dat-

aplane [57]. A similar trend can be found in the financial industry, which has used

dataplane based acceleration in high frequency trading [71].

Precise Network Measurement The physical Layer (PHY) of the network dataplane

can be used for precise network measurement if made accessible to programmers. For

example, available bandwidth, which is defined as the maximum data rate that a process

can send to another process without going over the network path capacity between the

two, can be estimated with algorithms based on active probing [173]. Available band-

width estimation algorithms work by examining and detecting any changes in measured

one-way delay of probe packets to infer queuing (buffering) in the network. The one-

3

way delay is the amount of time for a packet to travel from the sender to the receiver of

the packet. An increase in one-way delay implies more buffering, queuing or congestion

in the network path, and therefore less available bandwidth. Being able to precisely con-

trol and measure active probes in the dataplane enables accurate bandwidth estimation

algorithms.

Clock Synchronization Servers in data center networks are loosely synchronized.

Existing clock synchronization protocols provide different levels of precision, includ-

ing NTP [141] and PTP [12]. Synchronization precision is the maximum difference

between any two clocks [100]. NTP can provide millisecond to microsecond precision

in a Local Area Network (LAN), and PTP can provide tens of nanosecond to microsec-

ond precision in a LAN if properly configured [111, 112]. In particular, PTP employs

many techniques to remove uncertainties in measured round-trip times. For example,

hardware timestamping is commonly used and PTP-enabled switches are deployed to

minimize network jitter. Nonetheless, it is not possible to completely remove the net-

work jitter and non-deterministic delays. The accuracy of PTP can be as close as hun-

dreds of nanoseconds, and can degrade to tens of microseconds depending on network

conditions [112].

The physical layer of network devices can be used to implement a decentralized

clock synchronization protocol. By doing so, the clock synchronization protocol elimi-

nates most non-deterministic elements in clock synchronization protocols. Further, the

protocol can send control messages in the physical layer for communicating hundreds

of thousands of protocol messages without interfering with higher layer packets. Thus,

it has virtually zero overhead since no load is added to layers 2 or higher at all.

4

1.2 Problems with Existing Network Dataplanes

Programming the network is meant to control the packet forwarding and processing be-

havior of network elements. A network element is a computer system that can forward,

filter, or modify network packets. It is challenging to design network elements with

existing dataplanes to handle the above examples due to the following problems:

Flexibility or Performance, Pick One. The implementation of the network dataplane

is often a trade-off between flexibility and performance. A flexible network dataplane

can be built from conventional servers and CPUs, e.g., Click [98], RouteBricks [62],

OpenvSwitch [164]. However, the end of Moore’s law [175] has made it more diffi-

cult to build software-based network dataplanes to cope with increases in network link

technology. In particular, while processors no longer scale in frequency, network link

technology continues to increase exponentially (1Gbps, 10Gbps, 100Gbps, 400Gbps).

Alternatively, network dataplanes are often built with hardware network elements (e.g.,

switches and routers). These hardware network dataplanes are fast, but not flexible.

Hardware dataplanes can be implemented with ASICs. As the name implies, ASICs are

manufactured for a specific set of applications (in this case, a set of network protocols).

Dataplanes that are built with ASICs are often referred to as fixed-function dataplanes.

For example, the VxLAN example shows fixed-function dataplanes typically require a

long, multi-year design cycle to support custom protocols.

Complex Programming Model and Vendor Centric Design. To keep up with

changing requirements, computer architects have devised new families of computer

chips. Network processors (NPs) are software programmable chips designed to pro-

cess packets at line speed, but at 1/100th overall throughput compared to fixed function

5

ASICs [49]. Since the processing latency usually exceeds the packet inter-arrival time,

multiple packets are typically processed concurrently. For this reason, network proces-

sors usually consist of multi-threaded multiprocessors. Multi-threading has also been

used extensively in network processors to hide pipeline stalls [49]. Further, complex in-

struction sets and vendor-specific architectures result in complex programming models.

Adopting a network processor often results in vendor lock-in to a particular provider’s

solutions.

FPGAs are semiconductor devices that are based around a matrix of configurable

logic blocks (CLBs) connected via programmable interconnects. While FPGAs can be

reprogrammed to desired application or functionality requirements after manufacturing,

other issues endemic to this chip set make them difficult to use for packet processing.

The programming languages for programming FPGAs, such as Verilog or VHDL, are

low level languages. Hardware design with complex control logic manifests itself at

module boundaries as ad-hoc protocols and assumptions on signaling. Without consis-

tent and clear semantics on protocols and signalings, designs tend to accumulate layer

upon layer of such assumptions, often poorly documented (if documented at all) and

poorly communicated between the designer of a module and the users of the module,

which makes designing with Verilog difficult and prone to errors [147].

In order to support custom protocols or accelerate application logic, as discussed in

the first two examples, both NPs and FPGAs based solutions require extensive effort to

rewrite the protocol or logic to vendor-specific architectures, programming models or

programming languages that are used by these reconfigurable devices.

Opaque, Non-programmable Components. Part of the network dataplane is not pro-

grammable at all. For example, the physical layer is usually implemented in hardware,

6

and, consequently, its behavior cannot be modified through programs. The physical

layer defines the means of transmitting raw bits and signals rather than logical data

packets over a physical link connecting network nodes. The bit stream may be grouped

into code words or symbols and converted to a physical signal that is transmitted over

a hardware transmission medium. The physical layer provides a plethora of services to

the upper layers of the network stack: modulation, line encoding, bit synchronization,

circuit switching, forwarding error correction, and so on. Despite the rich services pro-

vided by the physical layers, they are largely ignored by the system programmers as

opaque components. The situation is further exacerbated by commodity network inter-

face cards (NICs), which do not provide nor allow an interface for users to access the

PHY in any case. However, the physical layer has the most precise control over how bits

are sent over the network link. The fact that operations on physical layers are agnostic to

upper layers of the network stack provides a unique opportunity to implement accurate

timestamping, network measurement and clock synchronization protocols.

1.3 The Rise of Programmable Network Dataplanes

Programmable network dataplanes can fundamentally change the way network elements

are built and managed. They have the following distinct features from the existing data-

planes.

Balancing Flexibility and Performance Programmable dataplanes balance flexibil-

ity and performance. The key to this balancing act is a good abstraction for packet

processing. A good abstraction must be high level enough, such that it allows software

to be built on top of the abstraction that easily captures the intent of the packet process-

ing task. However, the abstraction must also be at a low enough level, such that it can

7

be easily mapped to appropriate hardware for implementation.

A similar analogy can be found in Graphics Processing Units (GPUs) or Digital

Signal Processing (DSP). In both cases, an abstraction exists to represent the underlying

hardware. In the case of a GPU, a unit of execution is abstracted as a thread to be

executed on one of the thousands of hardware cores available on a single GPU. In the

case of DSP, the abstractions are key mathematical functions to transform signals, e.g.,

filtering functions like Finite Impulse Response (FIR) and Infinite Impulse Response

(IIR) filter blocks, common math functions such as square root, cosine, sine, and Fast

Fourier Transforms (FFT).

A common abstraction for packet processing is match-action pipeline, first proposed

by OpenFlow [137]. With the match-action abstraction, a packet processor can be mod-

eled as a sequence of match and action pipeline stages. Each pipeline stage performs a

different operation on the packets that flow through. Such abstraction can be mapped to

FPGAs and next generation ASICs.

Programming with a Network Dataplane Language Languages can be built on top

of the appropriate abstraction to allow developers to program the network dataplane.

One example of this is the dataplane programming language, P4 [155], which stands

for programming protocol-independent packet processors. P4 provides a set of pro-

gramming constructs that represent the basic building block for packet processing, such

as parser, match table, action block. Programmers are already using the language to

implement a variety of novel applications including network telemetry tools [95] and

advanced load balancers [94]. The language is platform-independent, which means it

can be mapped to all of the dataplane implementation technologies: software, FPGAs,

ASICs, NPs. The language is also architecture-independent, which means it can be used

8

to describe different dataplane architectures, such as bump-in-the-wire [28], which is

often used to implement network functions, such as network proxies, and multi-port

switching, that are commonly found in switches and routers.

Programmable PHYs Programmable physical layers (PHYs) provide the opportu-

nity to improve upon and develop new network research applications which were not

previously feasible. First, as a powerful network measurement tool, a programmable

PHY can generate packets at full data rate with minimal interpacket delay. It also pro-

vides fine-grain control over the interpacket delay. Second, a programmable PHY can

accurately capture and timestamp incoming packets at any data rate. Further, this pre-

cise timestamping can improve the accuracy of research based on interpacket delay. For

example, a programmable PHY can be used to profile network components [113].

1.4 Challenges in the Programmable Dataplane Design

In this section, we describe the challenges inherent to research supporting programmable

network dataplanes and explain two research questions that this dissertation addresses.

1.4.1 Lack of Programmable Network Dataplanes: Packet Process-

ing Pipeline

Packet processing pipelines are used by individual network elements to implement

packet processing algorithms. Many features provided by network elements are packet

processing tasks in one way or another: routing, firewall, tunneling, and encryption. A

router processes packet headers, and redirects packets based on the header content. A

9

firewall filters packets based on content in a defined set of packet headers. A packet

processing pipeline is flexible if it allows a user to specify complex packet processing

tasks from simple high-level language constructs. A packet processing pipeline is fast

if the pipeline can scale to multiple network interfaces simultaneously, such as 10 or 25

Gbps network interfaces. Unfortunately, state-of-the-art packet processing pipelines are

either flexible or fast – not both.

The challenge is in designing a flexible and fast packet processing pipeline. Specif-

ically, we address the research question: How can packet processing pipelines be as

flexible as software processors, while achieving high performance close to hardware

packet processors?

To address these challenges, a viable approach must enable users to specify the

functionality of the pipeline, ideally through a programming language with high-level

abstraction. A technique should minimize the effort to translate from a high-level spec-

ification to a high performance hardware implementation. It should also be portable to

different hardware targets based on the complexity of the application and resource uti-

lization. Unfortunately, existing systems do not satisfy these requirements in full. NetF-

PGA [128] offers a framework to implement high-performance, efficient packet pro-

cessing pipeline in FPGA, but the users have to manually implement the desired packet

processing algorithm in low-level hardware description language. OpenvSwitch [152]

offers a flexible software packet processing pipeline, but the performance is limited to

by the capability of host CPUs and the complexity of the processing algorithm.

A dataplane compiler and runtime enables users to generate a custom packet pro-

cessing pipeline from a high-level dataplane language. As an instance of the approach,

we present P4FPGA, an open-source P4-to-FPGA compiler and runtime that is designed

to be flexible, efficient, and portable. The compiler has two parts: a front end that turns

10

the P4 code into a target-independent intermediate representation (IR), and a back end

that maps the IR to the FPGA backend target. In our case, the backend target is imple-

mented using a high level hardware description language, Bluespec [147](See Appendix

B). The P4-to-FPGA compiler outputs Bluespec source code from a templated imple-

mentation, which is combined with a runtime framework (also written in Bluespec) to

generate corresponding FPGA firmware. We describe our approach to compile P4 to

FPGA target, embodied in P4FPGA, in more detail in Chapter 3. Then, we show a

few prototypes of dataplane-accelerated applications built with the dataplane compiler

in Section 3.5.

1.4.2 Lack of Programmable Network Dataplanes: Network Inter-

face

Commodity network interfaces do not provide programmable access to the idle bits be-

tween packets. In other words, the PHY and Media Access Control (MAC) layer of the

network protocol stack is opaque to system developers; they lack programmability. For

example, an end host cannot use commodity network interfaces to add or remove arbi-

trary bits between packets, meaning it cannot accurately pace the packets, thus means

the packet send rate cannot controlled [113]. Furthermore, the end host cannot precisely

count the bits between adjacent packets using commodity network interfaces, which

makes accurate timestamping difficult.

The challenge is in creating a programmable physical layer to provide access to

physical layer bits while maintaining line rate performance. Specifically, we address

the following question: How to build a programmable PHY to access every bit in the

physical layer while maintaining link speed line rates?

11

To support a programmable physical layer, the approach must be able to access the

PHY in software. Techniques should enable software to decide how many bits to insert

or remove between packets. Furthermore, it is important to achieve real-time access,

because the physical layer is always sending and receiving bits, usually at 10 gigabits

per second and beyond. Finally, an approach must be able to scale to multiple line rate

ports, such as 10 gigabit Ethernet ports to implement a network data plane for network

measurement.

We explore a programmable PHY in order to grant users the flexibility to program

every bit in the physical layer. As such, a user can implement an accurate network mea-

surement application, create a covert timing channel, and even implement a distributed

clock synchronization protocol. We investigate an approach to expose every bit in the

physical layer of the network stack to software. As an instance of the approach, we

present the design and implementation of SoNIC, a software network interface that im-

plements the physical layer of the network protocol stack in software. We describe our

methodology and prototype of SoNIC in more details in Chapter 4. Then, we present

the design and implementation of a few prototypes, MinProbe, an available bandwidth

estimator in Section 4.4, and DTP, a data center clock synchronization protocol in Sec-

tion 4.5.

1.5 Contributions Towards a Programmable Network Dataplane

In this dissertation, we explore how to make every bit on a network dataplane pro-

grammable that contributes towards a programmable network dataplane.

First, we explore a programmable packet processing pipeline for the network

dataplane. We show that designing packet processing pipelines on hardware can be

12

fast, and flexible (programmable). We built P4FPGA, a network dataplane compiler and

runtime to generate a custom FPGA dataplane designed and built from the P4 language.

We show that P4FPGA supports a variety of programmable dataplane implementations.

For example, we created network routers, trading protocol parsers, a set of benchmark

applications, and further highlight the benefit of dataplane programming with P4Paxos,

an application that speeds up consensus protocol by offloading part of the protocol to

the network dataplane.

Second, we investigate a programmable physical layer for the network data-

plane. We show that a software programmable PHY can flexibly control every bit in the

physical layer of the network, thus controlling inter-packet gaps. We designed and built

SoNIC, a programmable PHY that runs at 10Gbps on a commodity server. SoNIC cap-

tures and controls the timing of physical layer bits with sub-nanosecond precision. With

precise timestamping and pacing, we implemented an available bandwidth estimation al-

gorithm, MinProbe. We further improved the resource-efficiency of the programmable

network interface with a hardware-based programmable PHY. We then implemented a

fourth primitive: modify, to embed information into inter-packet gaps. With the modify

primitive, we implemented a clock synchronization protocol, Datacenter Time Protocol

(DTP). DTP is a decentralized protocol that eliminates many non-deterministic factors

from the network. As a result, it provides bounded precision to the tens of nanosecond

in a data center network.

1.6 Organization

The rest of the dissertation is organized as follows: Chapter 2 describes the scope of

the problem and the methodology for investigation. Chapter 3 describes the design of

13

a programmable dataplane and its prototype implementation, P4FPGA that provides a

framework to compile a high-level network specification to a hardware implementation.

Section 3.5 presents new network applications implemented with P4FPGA: P4Paxos,

a market data analyzer, and a set of micro-benchmarks. Chapter 4 details the design

of a programmable PHY and an implementation of the approach, SoNIC that provides

precise control of every bit and thus precise packet timing control and measurement.

Section 4.4 presents two novel applications enabled by a programmable PHY: available

bandwidth estimation, and data center clock synchronization.

14

CHAPTER 2

SCOPE AND METHODOLOGY

This chapter describes the problem scope and methodology of this dissertation. First,

we clarify the scope of the problems by reviewing the design and implementation of a

network dataplane. Then, we describe our methodology for evaluating and validating

our research contributions.

2.1 Scope: Understanding the Network Dataplane

A single network element consists of two planes: the control plane and the dataplane.

The control plane configures the forwarding and packet processing behavior, while the

dataplane forwards and processes packets based on configuration directives from the

control plane. Network programming has several forms. First, manual configuration

of network devices is a type of network programming. Network operators (e.g., net-

work administrators) configure network devices (e.g., switches and routers) via a device-

specific command line interface (CLI) to set up access control lists, routing policies and

traffic load balancing. Second, software programs (e.g., network control programs writ-

ten in C++ or Java) can automate the configuration process via a standard Application

Programming Interface (API). Many of these programming tasks focus on the control

plane and management plane tasks, which is referred to as control plane programming.

Finally, modifying network forwarding behavior and introducing new dataplane func-

tionality is another form of network programming. For example, the network dataplane

could be programmed to offload distributed consensus protocols to the network [56].

The network dataplane could also be programmed to enable tightly synchronized time

in data center networks [112]. This dissertation explores the last type of network pro-

15

Direction of Traffic Flow

Packet Frame Inter-Packet Gap

Figure 2.1: Different types of bits on dataplane, green color represents inter-packet gap,
red color represents packet header, yellow color represents packet payload.

gramming – dataplane programming.

Dataplane programming is writing a program that can control of every single bit

on a network dataplane. In particular, network dataplanes can be classified into two

categories: the ability to program the bits that belong to a packet, i.e. packet headers

and payload, and the ability to program bits that are between subsequent packets, i.e.,

the filling bits. (See Figure 2.1)

2.1.1 Dataplane Programming

Four basic primitives can be used to operate on the network dataplane. We can use these

primitives to manipulate bits within packets and between packets. These four primitives

are: add, delete, count and modify.

These basic primitives can be performed on packet bits, which are usually part of the

dataplane programming language specification. The add, delete and modify primitives

enable new protocols. When dealing with packets, a set of bits are operated on, instead

of individual bits. The set of bits could represent a packet header or payload. For

example, a tunneling protocol needs primitives to add or remove headers. A router

needs primitives to update values in packet header fields, such as decreasing the TTL

(Time-To-Live) fields in the IP (Internet Protocol) header. Stateful operations, such as

16

Direction of Traffic Flow

Programmable Protocol Parser

Trading Protocol Messages

Stock Prices

Figure 2.2: A programmable protocol parser that can parse financial trading protocol at
high speed and low latency.

Direction of Traffic Flow

Packet Bits

Middlebox

First Bit

Direction of Traffic Flow

First Bit

Additonal Filling Bits

Filling Bits

97ps

A programmable middlebox that is able to pace at sub-nanosecond precision

Figure 2.3: A programmable dataplane that can pace packets at sub-nanosecond preci-
sion.

count, can be used, to accumulate packet statistics, e.g., the number of bytes received

and transmitted.

With the add and delete primitives, the generated packet rate can be controlled.

Adding filling bits between packets will slow down the instantaneous packet rate. Re-

moving filling bits will increase the instantaneous packet rate and creates a burst of

packets. For example, a middlebox that supports adding/removing filling bit can pre-

cisely pace traffic at sub-nanosecond precision, as show in Figure 2.3. In this figure,

each filling bit in 10 Gigabit Ethernet is about 97 picoseconds wide. The count primitive

17

enables the number of filling bits to be determined between packets. With the count, the

time elapsed between packets can be computed and measured at sub-nanosecond pre-

cision. Furthermore, the modify primitive changes the values stored in the filling bits.

With ’modify’, a time synchronization protocol can be created with zero-overhead at the

network layer.

Programmable dataplanes can be easily extended to support custom protocols. For

example, Figure 2.4 shows a snippet of a description of trading protocol called Market

Data Protocol (MDP) which is used by the Chicago Mercantile Exchange [190]. The

implementation of MDP is complicated by the fact that the protocol header is variable

length. Figure 2.4 shows the header definitions for a book refresh message. A book is

an entity that keeps the most recent stock price. A book refresh message has a fixed

header mdp t that is common to all MDP protocol messages, as well as a variable

length header, refreshBook, with one or more entries refreshBookEntry. A

field numEntries in refreshBook dictates how many entries must be extraced by

the parser.

2.1.2 Network Protocol Stack

Before we discussing about dataplane programming further, we will provide a brief

overview of the network protocol stack, focusing on the aspects related to the packet

bits and filling bits. A network protocol stack is an implementation of a computer net-

working protocol suite. An example is 10 Gigabit Ethernet protocol stack, as shown in

Figure 2.5. A more detailed treatment of the network protocol stack can be found in

Appendix B.

18

1 header_type mdp_t {
2 fields {
3 msgSeqNum : 32;
4 sendingTime : 64;
5 msgSize : 16;
6 blockLength : 16;
7 templateID : 16;
8 schemaID : 16;
9 version : 16;

10 }
11 }
12
13 header_type event_metadata_t {
14 fields {
15 group_size : 16;
16 }
17 }
18
19 header_type refreshBook {
20 fields {
21 transactTime : 64;
22 matchEventIndicator : 16;
23 blockLength: 16;
24 numEntries: 16;
25 }
26 }
27
28 header_type refreshBookEntry {
29 fields {
30 mdEntryPx : 64;
31 mdEntrySize : 32;
32 securityID : 32;
33 rptReq : 32;
34 numberOfOrders : 32;
35 mdPriceLevel : 8;
36 mdUpdateAction : 8;
37 mdEntryType : 8;
38 padding : 40;
39 }
40 }

Figure 2.4: Header definitions for MDP.p4.

19

Application (L5)

Transport (L4)

Network (L3)

Data Link

(L2)

Physical

(L1)

LLC (Logical Link Control)

MAC (Media Access Control)

RS (Reconcilliation Sublayer)

PCS(Physical Coding Sublayer)

PCS3

PCS2

PCS1

TX RX

PMA (Physical Medium Attachment)

PMD(Physical Medium Dependent)

Encoder Decoder

Scrambler Descrambler

Gearbox Blocksync

Figure 2.5: IEEE 802.3 10 Gigabit Ethernet Network stack.

Packet Bits The packet bits exist in the data link layer and above (Layer 2 to 5; L2

to L5). We discuss packet bits in the context of the most common protocol on the

Internet – the Transmission Control Protocol/Internet Protocol (TCP/IP protocol stack)

. TCP/IP works as follows: to send a chunk of data between applications on separate

networked systems, the application layer (L5 in Figure 2.5) makes sure that the data is

sent in a format that will be understandable by the recipient. Then, the transport layer

(TCP) splits the application data into chunks that can fit into the maximum data packet

size. It then attaches a sequence number to each packet, specifying packet order. The

sequence number allows the recipient to re-assemble the data correctly at the other end.

Next, the network layer (IP) attaches the IP address of the sender and the receiver to the

packet, so that the network can route the messages to the destination. Finally, the link

layer attaches a MAC (Media-Access-Control) address of the sender and the recipient,

allowing the packets to be directed to a specific network interface on the host machine.

20

Filling Bits The filling bits exist in the Physical Layer (PHY) of the 10GbE protocol

stack. PHY of 10 GbE consists of three sublayers: the Physical Coding Sublayer (PCS),

the Physical Medium Attachment (PMA) sublayer, and the Physical Medium Depen-

dent (PMD) sublayer. The PMA and PMD sublayers are responsible for clock recovery

and (de-)serializing the bitstream. The PCS performs the blocksync and gearbox (we

call this PCS1), scramble/descramble (PCS2), and encode/decode (PCS3) operations on

every Ethernet frame. The filling bits (also called the idle characters) are special control

characters that are used to fill any gaps between two Ethernet frames.

Network Interface The network interface implements the physical (PHY) and media

access (MAC) layers of the network stack. On the receiving path, the network interface

converts the bitstream to packets, which on the transmitting path, it does the reverse. A

network interface can be a network interface card on commodity servers. It can also be

part of the silicon chip (e.g., FPGA) that implements PHY and MAC.

Packet Processing Pipeline Packet processing refers to the wide variety of algorithms

that are applied to a packet of data or information as it moves through the various net-

work elements of a communications network. The packet processing pipeline forwards,

drops and/or modifies packets. Consider a packet processing pipeline inside an Inter-

net Procotol (IP) router. The pipeline receives an IP packet from one of its network

interfaces. First it checks a routing table to determine the next hop interface to send the

packet to. Next, the pipeline processes and modifies the packet by updating its Time-

To-Live (TTL) field and checksum fields. Finally, the pipeline sends the packet to the

next router via an outgoing network interface.

21

2008 2012 2016

Model Xeon X5492 Xeon E5-4650 Xeon E7-8890
Core Count 4 8 24
Clock Frequency 3.4 GHz 2.8 GHz 2.2 GHz
Process technology 45nm 32nm 14nm
L2 Cache - 8 x 256 KB 24 x 256KB
L3 Cache 12MB 20MB 60MB
DRAM Frequency 1600MT/s 4x1600MT/s 4x1866MT/s
Release price $1279 $3620 $7174

Table 2.1: Dell server specifications from year 2008 to 2016, Xeon CPUs in 2008 does
not have per-core L2 Cache, instead it uses per-socket L3 Cache.

2.1.3 Fast and Flexible Packet Processors

Networks would benefit from fast and flexible packet processors. If a packet processor

can process custom header bits, it would simplify the design and deployment of new

network protocols. Similarly, if a packet processor can handle custom payload bits,

critical network functions, such as packet classification and consensus protocol, can be

offloaded to network dataplane. At the same time, a packet processor must be fast. For

example, data center network bandwidth has been growing steadily: 10Gbps Ethernet

is prevalent, 25Gbps is gaining traction, and 100 Gbps is on the horizon as of the time

of writing this dissertation. Handling packet forwarding at line rate while performing

complex packet processing requires significant computation power and programmabil-

ity. Unfortunately, none of the existing network dataplanes can achieve both flexibility

and performance at the same time.

We surveyed three dataplane implementation technologies from 2008, 2012, and

2016, to understand how different types of network dataplanes have evolved and why

existing dataplanes lack flexibility or performance; that is, network dataplanes are either

flexible (programmable) or performant, but not both.

22

Year 2008 2012 2016

Series Trident+ Trident II Tomahawk
Model BCM56820 BCM56850 BCM56960
Process Technology 40 nm 40 nm 28 nm

Transceivers 24 x 10Gbps
128 x 10Gbps 128 x 25Gbps
(32 x 40Gbps) (32 x 100Gbps)

Forwarding Cores 1 1 4
Buffer Size 9MB 12MB 16MB
Latency ≈500us ≈500ns ≈300ns
Feature Set

Table 2.2: Broadcom Trident-series switch ASIC specification from year 2008 to 2016

Software Packet Processors Software packet processors are flexible but not fast.

Software packet processors are software programs that are written in high level program-

ming language, such as C or C++, and executed on general purpose CPUs. A 25Gbps

network interface can receive a minimum sized (64B) packet every 19.2ns. However,

at this speed, even a single access to a last level cache would take longer than the ar-

rival time of a packet. Processing packets in a software dataplane is challenging, even

when using all the advanced software techniques, such as kernel bypass, receive side

scaling, and data direct I/O [62]. Worse, CPU performance is unlikely to improve be-

cause of stalled frequency scaling [175]. Table 1 summarizes three examples of CPUs

for building software dataplanes in the years 2008, 2012, and 2016, which compare the

CPU frequency, total number of cores, fabrication process and memory bandwidth. The

“Core Count” row of the table shows that the total number of CPU cores has increased

from 4 to 24 in the year 2016, whereas Clock frequencies have decreased from 3.4GHz

to 2.2GHz. If we use clock frequency to approximate single thread performance, the

performance has not improved during the year between 2008 and 2016. As network link

speeds approach 25Gbps or 100Gbps, software network dataplanes put a lot strain on

server computation and memory capabilities and become impractical.

23

2008 2012 2016

Family Virtex-6 Virtex-7 Virtex Ultrascale+
Model XCE6VHX565T XC7VH870T VU37P
Silicon Process 40 nm 28 nm 20 nm

SerDes
48 x 6.6Gbps 72 x 13.1Gbps

96 x 32.75Gbps
(24 x 11.2Gbps) (16 x 28.05Gbps)

Logic Cells 566K 876K 2,852K
Flip-Flops 708K 1,095K 2,607K
Block RAM 32,832Kb 50,760Kb 70,900Kb
UltraRAM - - 270.0Mb

Table 2.3: Xilinx Virtex-series FPGA specification from year 2008 to 2016

ASIC-based Packet Processors ASIC-based packet processors are fast, but not flex-

ible. These packet processors are often used in modern switches and routers [146], and

tend to handle a limited set of protocols. For example, Table 2.2 compares three gen-

erations of Broadcom switch ASICs, the dominant device used for switch development,

from year 2008 to 2016 [74]. The Transceivers row shows that the number of ports and

per-port link speed have scaled substantially during that period. However, the feature

set provided by the switch ASICs remained largely constant. Consequently, despite the

performance gain, ASICs are still sub-optimal in terms of providing a programmable

dataplane, because it is difficult to fulfill application requirements that are not directly

supported.

FPGA-based Packet Processors Packet processors implemented in FPGAs balance

hardware performance and software flexibility. For example, the NetFPGA project [128]

has been used to prototype shortest path routing and congestion control algorithms [65].

The designs are expressed using a hardware description language, such as Verilog, and

synthesized to FPGAs using vendor-specific place-and-route tools. (See Appendix D)

Table 2.3 shows three generations of Virtex-series FPGAs from Xilinx in the years 2008,

24

2012 and 2016. We selected the top-of-line FPGA model for each generation. The

process technology used by Xilinx in each generation is similar to the fabrication pro-

cess employed by Broadcom in the same period [24]. During the period, the data rate

of transceivers on Virtex FPGA has increased by 3x, (from 11.2Gbps in Virtex-6 to

32.75Gbps in Virtex UltraScale+), and the total number of transceivers has increased

slightly from 72 in Virtex-6 to 96 in UltraScale+, with limited scaling due to packaging

limitations. The amount of logic and memory resources on FPGA has increased by 2x

and 5x, respectively. Overall, FPGAs offer competitive flexibility to software due to

their reconfigurability; and they provides comparable performance to ASICs.

The challenge in FPGA-based design is that the packet processing pipelines are often

hard-coded with packet processing algorithms. Implementing a new packet processing

algorithm requires users to program in low-level hardware description languages, which

is a difficult and error-prone process.

In this dissertation, we explore a different approach to compiling network dataplane

programs written in high level language to hardware. We prototype the approach on an

FPGA. The same methodology is applicable to ASICs as well, if they provide a pro-

grammable abstraction in their design [36]. In this dissertation, we propose an approach

to allow users to program in a high-level declarative language. In particular, the users

can describe how packets are parsed, processed and re-assembled within the pipeline

using a language called P4 [38]. We demonstrate that a compiler can map the high-level

description to a template implementation on FPGAs to instantiate the dataplane imple-

mentation. Further, our approach is portable and the template implementation can be

synthesized to both Altera [20] and Xilinx [24] FPGAs.

In summary, there is an opportunity to leverage high level programming language to

generate the network dataplane that is both high performance and flexible. We design a

25

system to compile network dataplane programs to FPGA devices in Chapter 3.

2.1.4 Precise Packet Timing Control with a Programmable PHY

The potential rewards of opening the inner workings of the PHY provides the ability to

study networks and the network stack at a heretofore inaccessible level, by improving

the precision of network measurements by orders of magnitude [67]. A 10 GbE network

uses one bit per symbol. Since a 10 GbE link operates at 10.3125 Gbaud, each and every

symbol length is 97 pico-seconds wide (= 1/(10.3125 ∗ 109)). Knowing the number of

bits can then translate into having a precise measure of time at the sub-nanosecond gran-

ularity. Therefore, on the receive path, we can tell the exact distance between Ethernet

frames in bits by counting every bit. On the transmit path, we can control time gaps by

controlling the number of bits (idle characters) between frames.

Unfortunately, current commodity network interface cards do not provide any Appli-

cation Program Interfaces (API) for accessing and controlling every bit in the PHY. One

way of doing these interfaces is to use physics equipment such as an oscillator for cap-

turing signals and a laser modulator for transmitting signals as shown in BiFocals [67].

However, BiFocals is not a real time tool: It can only transmit pre-generated symbols

and must perform extensive offline computation to recover symbols from captured sig-

nals by the oscillator. As a result, we take a different approach to access and control bits

in the PHY: Implementing the PHY in software.

The fundamental challenge to perform the PHY functionality in software is main-

taining synchronization with hardware while efficiently using system resources. Some

important areas of consideration when addressing this challenge include hardware sup-

port, real time capability, scalability and efficiency, and a usable interface.

26

Hardware support The hardware must be able to transfer raw symbols from the wire

to software at high speeds. This requirement can be broken down into four parts: a)

Converting optical signals to digital signals (PMD), b) Clock recovery for bit detection

(PMA), and c) Transferring large amounts of bits to software through a high-bandwidth

interface. Additionally, d) the hardware should leave recovered bits (both control and

data characters in the PHY) intact until they are transferred and consumed by the soft-

ware. Commercial optical transceivers are available to convert optical signals to digital

signals, but hardware that simultaneously satisfies the remaining three requirements is

not common since it is difficult to handle 10.3125 Giga symbols in transit every second.

NetFPGA 10G [128] does not provide software access to the PHY. In particular,

NetFPGA pushes not only layers 1-2, the physical and data link layers into hardware,

but potentially layer 3 as well. Furthermore, it is not possible to easily undo this design

since it uses an on-board chip to implement the PHY, which prevents direct access to the

PCS sublayer. As a result, we need a new hardware platform to support software access

to the PHY.

Real time Capability Both hardware and software must be able to process 10.3125

Gbps continuously. The IEEE 802.3 standard [13] requires the 10 GbE PHY to generate

a continuous bitstream. However, synchronization between hardware and software and

between multiple pipelined cores is non-trivial. The overheads of interrupt handlers and

OS schedulers can cause a discontinuous bitstream which can subsequently incur packet

loss and broken links. Moreover, it is difficult to parallelize the PCS sublayer onto multi-

ple cores, because the (de-)scrambler relies on the state of the previous 59 bits to recover

bits. This fine-grained dependency makes it hard to parallelize the PCS sublayer. The

key takeaway here is that everything must be efficiently pipelined and well-optimized in

order to implement the PHY in software while minimizing synchronization overheads.

27

Scalability and Efficiency The software must scale to process multiple 10 GbE bit-

streams while efficiently utilizing resources. Intense computation is required to imple-

ment the PHY and MAC layers in software. (De-)Scrambling every bit and computing

the CRC value of an Ethernet frame is especially intensive. A functional solution would

require multiple duplex channels that independently perform the CRC, encode/decode,

and scramble/descramble computations at 10.3125 Gbps. The building blocks for the

PCS and MAC layers will therefore consume many CPU cores. In order to achieve a

scalable system that can handle multiple 10 GbE bitstreams, resources such as the PCIe,

memory bus, Quick Path Interconnect (QPI), cache, CPU cores, and memory must be

efficiently utilized.

User Interface Users must be able to easily access and control the PHY. Many re-

sources from software to hardware must be tightly coupled to allow realtime access to

the PHY. Thus, an interface that allows fine-grained control over them is necessary. The

interface must also implement an I/O channel through which users can retrieve data such

as the count of bits for precise timing information.

2.2 Methodology

2.2.1 Systems

To explore the feasibility of programmable dataplanes, we have developed three pro-

totypes: a hardware-based packet processing pipeline, a software-based programmable

PHY and a hardware-based programmable PHY. These three prototypes represent differ-

ent points in the design space for programmable dataplane. The software-programmable

28

PHY takes a software-oriented approach to favor software flexibility over hardware per-

formance. Hence, the focus of the work is to optimize software performance, while pre-

serving flexibility. The hardware-programmable PHY and packet processing pipeline

takes the opposite approach. In both cases, the method favors hardware performance

over software flexibility. Hence, the focus of the work to improve software programma-

bility while preserving the performance gain from hardware. Below, we describe each

prototypes in more details.

Hardware Packet Processing Pipeline The first prototype is a programmable packet

processing pipeline and a dataplane compiler. The target throughput is 4x10Gbps line

rate. The prototype implementation consists of a C++-based compiler along with a run-

time system written in hardware description language. For the frontend, the P4.org’s

C++ compiler frontend is used to parse P4 source code and generate an intermediate

representation [154]. The custom backend for FPGAs consists of 5000 lines of C++

code. The runtime is developed in a high-level hardware description language Blue-

spec [147]. Bluespec provides many of the higher level hardware abstractions (e.g.,

FIFO with back-pressure) and the language includes a rich library of components, which

makes development easier. The runtime is approximately 10,000 lines of Bluespec. The

Connectal Project [96] is used to implement the control plane channel, and mechanisms

to replay pcap traces, access control registers, and program dataplane tables.

Software Programmable PHY Our second prototype of a programmable PHY tar-

gets at the 10Gbps line rate. The prototype includes an FPGA card, which performs the

DMA (Direct Memory Access) transfers between network transceivers and host mem-

ory, and vice versa. The prototype also consists of a software component which imple-

ments the entire physical layer of the network protocol stack. The software is developed

29

and evaluated on Dell Precision T7500 workstations and Dell T710 servers. Both ma-

chines have dual socket, 2.93 GHz six core Xeon X5670 (Westmere [15]) with 12 MB

of shared L3 cache and 12 GB of RAM, 6 GB on each CPU socket. This prototype is

used to evaluate both SoNIC and MinProbe , discussed in Chapter 4 and 4.4.

Hardware Programmable PHY The third prototype is built as a performance-

enhanced version of the second prototype. In particular, the target throughput is

4x10Gbps line rate, which poses a scalability challenge for the software-based approach.

As a consequence, the third prototype implements a programmable PHY in hardware.

The prototype is built using an Altera DE5 board, with a Stratix V FPGA. The im-

plementation includes the entire 10GbE physical layer designed in the Bluespec pro-

gramming language [147], and also extends the physical layer to perform the modify

operation to the value in idle characters, which is used to implement a zero-cost time

synchronization protocol.

2.2.2 Evaluation

We used various types of hardware networks, and network topologies throughout this

dissertation to evaluate our systems. We illustrate them in the following subsections.

National Lambda Rail

SoNIC To evaluate SoNIC, we connected the SoNIC board and the ALT10G board

directly via fiber optics (Figure 2.8a). ALT10G allows us to generate random packets

of any length and with the minimum inter-packet gap to SoNIC. ALT10G also pro-

vides us with detailed statistics such as the number of valid/invalid Ethernet frames, and

30

(a) HiTech Global FPGA board (b) NetFPGA-SUME board

Figure 2.6: FPGA development boards used for our research.

BostonChicago

Cleveland

Cornell (NYC) NYC

Cornell (Ithaca)

Sender Receiver

Figure 2.7: Our path on the National Lambda Rail.

frames with CRC errors. We compared these numbers from ALT10G with statistics

from SoNIC to verify the correctness of SoNIC .

Further, we created a simple topology to evaluate the SoNIC: We used port 0 of the

SoNIC server to generate packets to the Client server via an arbitrary network, and split

the signal with a fiber optic splitter so that the same stream can be directed to both the

Client and port 1 of the SoNIC server capturing packets (Figure 2.8b). We used various

network topologies composed of a Cisco 4948 and IBM BNT G8264 switches for the

network between the SoNIC server and the Client.

31

SoNIC server ALT10G

(a) Evaluation setup for SoNIC

Client

Splitter

SoNIC server

(b) Simple Topology for evaluating SoNIC

Figure 2.8: Simple evaluation setup.

MinProbe National Lambda Rail (NLR) was a wide-area network designed for re-

search and has significant cross traffic [148]. We set up a path from Cornell university

to NLR over nine routing hops and 2500 miles one-way (Figure 2.7). All the routers in

NLR are Cisco 6500 routers. The average round trip time of the path was 67.6 ms, and

there was always cross traffic. In particular, many links on our path were utilized with

1∼4 Gbps cross traffic during the experiment. Cross traffic was not under our control,

however we received regular measurements of traffic on the external interfaces of all

routers.

P4FPGA We evaluate the performance of P4FPGA generated designs against a set of

representative P4 programs. Each program in our benchmark suite is compiled with the

P4FPGA compiler into Bluespec source code, which is then processed by a commer-

cial compiler from Bluespec Inc. to generate Verilog source code. Next, the Verilog

source code is processed by the standard Vivado 2015.4 tool from Xilinx, which per-

forms synthesis, placement, routing and bitstream generation. All of the above steps

are automated with a Makefile. The compilation framework supports both the Altera

tool suite, Quartus, and Xilinx tool suite, Vivado. For this evaluation, we only used

Vivado. We deployed the compiled bitstream on a NetFPGA SUME platform with a

32

Xilinx Virtex-7 XC7V690T FPGA, with 32 high-speed serial transceivers to provide

PCIe (Gen3 x8) communication and 4 SFP+ ports (10Gbps Ethernet).

P4Paxos We ran our end-to-end experiments on a testbed with four Supermicro

6018U-TRTP+ servers and a Pica8 P-3922 10G Ethernet switch, connected in the topol-

ogy shown in Figure 6. The servers have dual-socket Intel Xeon E5-2603 CPUs, with

a total of 12 cores running at 1.6GHz, 16GB of 1600MHz DDR4 memory and two In-

tel 82599 10 Gbps NICs. We installed one NetFPGA SUME [62] board in each server

through a PCIe x8 slot, though NetFGPAs behave as stand-alone systems in our testbed.

Two of the four SFP+ interfaces of the NetFPGA SUME board and one of the four SFP+

interfaces provided by the 10G NICs are connected to Pica8 switch with a total of 12

SFP+ copper cables. The servers were running Ubuntu 14.04 with Linux kernel version

3.19.0.

2.3 Summary

Modern networks have the challenge to provide fast and flexible (programmable) net-

work dataplanes. First, the network dataplane needs to leverage a high level dataplane

programming language, a dataplane compiler, and a packet processing pipeline to en-

able automatic generation of a packet processor. Second, the network interface needs

to be programmed to enable software access to the filling bits or the inter-packet gaps

on the network dataplane to enable precise packet pacing and timestamping. In the re-

mainder of this dissertation, we describe how we investigate the research questions and

present the system designs, implementations, and evaluations that realize our approach

and validate our findings.

33

CHAPTER 3

TOWARDS A PROGRAMMABLE NETWORK DATAPLANE: P4FPGA AND

PROGRAMMABLE PACKET PROCESSING PIPELINES

This work appears in P4FPGA : A Rapid Prototyping Framework for P4 in SOSR

2017 with co-authors Robert Soule, Huynh Tu Dang, Ki Suh Lee, Vishal Shrivastav,

Nate Foster, and Hakim Weatherspoon.

To provide a flexible and programmable network dataplane, the developers must be

able to specify the behavior of network dataplane in high level programming languages.

Further, developers need access to platforms that can execute their designs efficiently in

hardware. In this respect, Field Programmable Gate Arrays (FPGAs) are an promising

target platform. As a form of reprogrammable silicon, FPGAs offer the flexibility of

software and the performance of hardware. Indeed, major cloud providers, such as Mi-

crosoft and Baidu, already deploy FPGAs in their data centers to boost performance by

accelerating network encryption and decryption or implement custom transport layers.

Designing a compiler using a domain specific programming language for FPGAs

presents several challenges: FPGAs are typically programmed using low-level libraries

that are not portable across devices. Moreover, communication between 3rd party pro-

cessing elements is device-specific, adding an additional hurdle to portability; Gener-

ating an efficient implementation of a source program is difficult, since programs vary

widely and architectures make different tradeoffs; Although P4 is target agnostic, it re-

lies on a number of extern functions for critical functionality, such as checksums and

encryption, complicating code generation.

In this chapter, we present P4FPGA, an open source P4-to-FPGA compiler and run-

time that is designed to be flexible, efficient, and portable. To ensure that P4FPGA is

34

flexible enough to implement diverse network functions, the compiler allows users to

incorporate arbitrary hardware modules written in the language of their choice. This

approach offers a degree of flexibility that would be difficult to achieve on other tar-

gets, such as a switch ASIC. To ensure that the code generated by the compiler is

efficient, P4FPGA supports both bump-in-the-wire [117] and multi-port switching ar-

chitectures [78]. This design allows users to select the best design for their particu-

lar application. Finally, to ensure that programs are portable across different devices,

P4FPGA provides a runtime with device-agnostic hardware abstractions. This runtime

allows P4FPGA to support designs that can be synthesized to either Xilinx or Altera

FPGAs.

We have evaluated our prototype implementation on a variety of representative P4

programs. Our experiments show that code generated by P4FPGA runs at line-rate

throughput on all packet sizes up to MTU, and exhibits latency similar to off-the-self

commodity switch ASICs. Moreover, P4FPGA is already being used by at least two

research projects [56, 73] to deploy P4 programs on actual hardware.

Overall, this chapter makes the following contributions: First, we present the design

and implementation of the first open-source P4-to-FPGA compiler and runtime system.

Second, we evaluate the performance of the generated backend on a variety of non-trivial

P4 programs and demonstrate that system performance is competitive with commercial

switches—e.g., latencies are comparable to commercial cut-through switches. Last, we

develop a wide variety of standard and emerging network applications using P4FPGA,

35

which demonstrates that the tool is broadly applicable.

3.1 Background

Before presenting the details of the design of P4FPGA, we briefly present a high-level

overview of the P4 language [39], and networking processing on FPGAs.

P4 Background When describing a P4 compiler, it is important to clarify some termi-

nology. A target is hardware that is capable of running a P4 program, such as FPGAs,

ASICs, or CPUs. An architecture refers to the combination of the runtime as well as

the processing pipeline specified in a P4 program. A P4 program is target independent,

meaning the same program can be implemented on different hardware. However, a P4

program can be implemented on a target with different architectures. For example, a

bump-in-the-wire architecture differs from a switching architecture in that there is no

crossbar in the runtime, resulting in different performance characteristics. A P4 com-

piler is responsible for mapping the abstract architecture specified by the P4 program

to a particular target and architecture. FPGAs are uniquely able to offer hardware-

level performance for all P4 programs. In contrast, a single switch ASIC will only be

able to faithfully implement a small subset of potential architectures and extern prim-

itives. P4FPGA supports both bump-in-the-wire [117] and multi-port switching archi-

tectures [78], which are suitable for network functions and routing, respectively.

As a language, P4 allows developers to specify how packets are processed in the

data plane of network forwarding elements. P4 programs are written against an abstract

architecture that hides the actual physical implementation. In the abstract architecture,

packets are first parsed, and then processed by a sequence of match-action tables. Each

table matches on specified packet header fields, and then performs a sequence of actions

36

to modify, forward, or drop the packet. Additionally, the program collects packet meta-

data, such as ingress and egress port numbers, which flows through the pipeline. At the

end of the pipeline, packets are reassembled for transmission in a deparser stage. Fig-

ure 3.2 illustrates a simple example with a single parser and match table pipeline. The

P4 language provides syntax that mirrors this abstract model. For brevity, we do not

describe the syntax in detail as the full language specification is available online [155].

We simply mention that programmers can declare packet headers, compose tables, and

specify actions. Tables can be populated at runtime with flow rules via a control plane

API.

The example code in Figure 3.1 shows a subset of a P4 program for counting UDP

packets by destination port. Line 4 defines the layout for the UDP packet headers.

Line 12 declares an instance of that header, named udp. Line 14 defines how to

parse UDP packet headers. The extract keyword assigns values to the fields in the

header instance. The return keyword returns the next parser stage, which could be

ingress, indicating the start of the pipeline. Line 32 is the start of the flow control

for the P4 program. It checks if the arriving packet is an Ethernet packet, then if it

is an IPv4 packet, and finally if it is a UDP packet. If so, it passes the packet to the

table count table, defined on Line 28. The table count table reads the desti-

nation port, and performs one of two possible actions: count c1 or drop a packet.

The action count c1 on Line 24 invokes a count function. The count function

must be defined externally to the P4 program.

FPGA Background FPGAs are widely used to implement network appliances [7,53]

and accelerators [29], as applications executing on FPGAs typically achieve higher

throughput, lower latency, and reduced power consumption compared to implemen-

tations with general-purpose CPUs. For example, Microsoft has implemented a

37

1 // We have elided eth and ipv4 headers,
2 // and the extern declarations for brevity
3
4 header_type udp_t {
5 fields {
6 srcPort : 16;
7 dstPort : 16;
8 length : 16;
9 checksum : 16;

10 }
11 }
12 header udp_t udp;
13
14 parser parse_udp {
15 extract(udp);
16 return ingress;
17 }
18
19 counter c1 {
20 type: packet;
21 numPackets : 32;
22 }
23
24 action count_c1() {
25 count(c1, 1);
26 }
27
28 table table_count {
29 reads { udp.dstPort : exact; }
30 actions { count_c1; _drop; } }
31
32 control ingress {
33 if (valid(eth)) {
34 if (valid(ipv4)) {
35 if (valid(udp)) {
36 apply(table_count);
37 }
38 }
39 }
40 }

Figure 3.1: Subset of a P4 program to count UDP packets.

38

Parser
Match
Action

Pipeline
Deparser Queue

Packet OutPacket In

CPU

Drop

Figure 3.2: Example P4 Abstract Architecture.

lightweight UDP-based transport protocol in FPGAs to react quickly to congestion

notifications and back off quickly to reduce packets that are dropped from incast pat-

terns [172].

Development on an FPGA typically involves using a low-level hardware description

languages (i.e., Verilog, HHDL) to statically specify a hardware circuit for a single

application [211]. However, these languages are widely regarded as difficult to use, and

consequently, there has been significant research in high-level synthesis [27, 44, 180].

P4FPGA uses one of these languages, Bluespec System Verilog [147], as both the

target for compiler generation, and to implement the runtime. Bluespec is a strongly

typed functional language, similar in many respects to Haskell. Users write hardware

operations as guarded rules [147], where each rule consists of a set of atomic actions that

all execute sequentially in one clock cycle. The language includes a large set of libraries

for common hardware constructs such as registers, FIFO queues and state machines.

Moreover, P4FPA uses Bluespec code from the Connectal project [96] to implement

the control plane channel. Using Bluespec simplifies FPGA development by providing

high-level language constructs, and is more expressive than Verilog.

39

P4FPGA Overview A compiler for P4 is responsible for two main tasks: generat-

ing the configuration to implement a data plane on a target platform at compile time

and generating an application programming interface (API) to populate tables and other

programmable elements at run time.

Figure 3.3 presents a high-level overview of the P4FPGA framework and compila-

tion strategy. The components inside the dashed line were developed specifically for

P4FPGA. The components outside the dashed line are existing open-source tools or

commercial products for FPGA synthesis that are reused by P4FPGA.

P4FPGA builds on the reference P4 compiler implementation provided by the P4

organization [158]. The reference compiler parses P4 source code, and produces a stan-

dard Intermediate Representation (IR) [158]. We chose to build on the reference front

end for practical reasons. It both reduces the required engineering effort, and ensures

that FPGA conforms to the latest P4 syntax standards.

P4FPGA includes three main components: a code generator; a runtime system; and

finally optimizers implemented as IR-to-IR transformers. The code generator produces

a packet-processing pipeline inspired by the model proposed by Bosshart et al. [40]

for implementing reconfigurable packet processing on switching chips. The runtime

provides hardware-independent abstractions for basic functionality including memory

management, transceiver management, host/control plane communication. Moreover, it

specifies the layout of the packet processing pipeline (e.g. for full packet switching, or

to support network function virtualization (NFV). The optimizers leveraging hardware

parallelism to increase throughput and reduce latency.

The compiler produces Bluespec code as output. Bluespec is a high-level hardware

description language that is synthesizable to Verilog. The Verilog code is further com-

40

P4 Source

IR

Processing
PipelineP4FPGA Runtime Verilog+

Front-End

Code
Generation

Downstream
Compiler

IR-to-IR
Transformers

P4FPGA

Figure 3.3: P4FPGA Framework Overview.

piled by downstream tool chains such as Xilinx’s Vivado or Altera’s Quartus. The output

bitstream can then be used to configure an FPGA.

In the following sections, we present the code generator, runtime system, and opti-

mizers in full detail.

3.2 Design

The core job of the P4FPGA compiler is to map logical packet-processing constructs

expressed in P4 into physical packet-processing constructs expressed in a hardware de-

scription language. We organize the generated physical constructs into basic blocks.

As in most standard compilers, a basic block is a sequence of instructions (e.g., table

lookups, packet-manipulation primitives, etc.). We implement basic blocks in P4FPGA

using parameterized templates. When instantiated, the templates are hardware modules

that realize the logic for packet parsers, tables, actions, and deparsers.

41

C++ Stub

Match
Table Action Match

Table Action

Memory Management Unit

Deparser

Network Controller

pcap scapy

P4FPGA-generated control APIP4FPGA-generated debug API

BRAM SRAM DRAM P4FPGA Runtime

Transceiver Management

Altera
PHY

Xilinx
GTX/GTH

Host Communciation

PCIe
Gen2/3

DMA Channel

Rx Channel

Packet Gen

FIFO

.

.
FIFO

Tx Channel

Tx Channel

.

.

.

512-bit crossbar

.

.

.

Packet Cap

Parser

Parser

Deparser

FIFO

FIFO

.

.

.

.

.
.
.

N-to-1 1-to-NP4FPGA-generated Pipeline

Figure 3.4: P4FPGA Runtime and Pipeline.

There are two motivations behind our use of basic blocks. First, it reduces the com-

plexity of the compiler, since code generation simply becomes the composition of mod-

ules that implement standard interfaces. Second, the modular design enables extensi-

bility in two ways: Programmers can easily add externally-defined functionality via a

foreign-function interface (e.g., to implement a custom hash function); Programmers

can modify the compiler by replacing one basic block with another that implements the

same functionality (e.g., to modify the memory storage to use DRAM, SRAM, or an

SSD).

The control flow constructs from the P4 source program dictate the composition of

the basic blocks. We refer to this composition of blocks as the programmable packet-

42

processing pipeline. This is in contrast to the fixed-function pipeline that is realized

by the P4FPGA runtime system. In other words, the programmable packet-processing

pipeline is specified by the logic of a particular P4 source program, whereas the fixed-

function pipeline is determined by the target platform, and is fixed for all input source

programs.

3.2.1 Programmable Pipeline

The programmable packet-processing pipeline realizes the programmable logic of a P4

source program on an FPGA hardware implementation. It consists of a composition of

basic blocks to parse, deparse, match, or perform an action.

Parsing Parsing is the process of identifying headers and extracting relevant fields for

processing by subsequent stages of the device. Abstractly, the process of parsing can

be expressed as a finite state machine (FSM) comprising a set of states and transitions.

From a given state, the FSM transitions to the next state based on a given input from a

header or metadata. A subset of the states identifies and extracts header fields. The FSM

graphs may be acyclic, as is the case with Ethernet/IPv4 parsers, or cyclic intended to

parse TCP options.

In general, there are two approaches to parsing: store-and-extract, and streaming.

With store-and-extract [102], the entire packet must be buffered before parsing, resulting

in higher latency. In contrast, P4FPGA adopts a streaming approach in which the packet

byte stream is fed into the FSM and processed as soon as there is enough data to extract

a header or execute a FSM transition.

The implementation of the parser basic block includes code that is common to all

43

parser instances and generated code that is customized for each specific parser. The

common code includes state variables (e.g., header buffer, parse state, and offset), and a

circuit that manages incoming bytes. The generated portion of a parser implements the

application-specific FSM.

Deparsing As shown in Figure 3.3, there are two sources of input data to the deparser

stage. One is the packet data stored in memory (§3.2.2), and one is the modified packet

header processed by the programmable pipeline. The deparser reassembles the packet

for transmission from these two input sources.

Like the parser, the deparser is implemented as a FSM. However, the design of de-

parser is more complicated, since it may add or remove headers during packet assembly.

The deparser consists of three modules: packet extender, packet merger, and packet

compressor. The packet extender supports the addition of headers by inserting empty

bytes at a designated offset. The packet merger writes modified packet fields, including

fields added by the extender module. The packet compressor marks bytes to be removed

by writing to a bit mask.

Note that the deparsing stage is responsible for modifying packets. Packet modifi-

cation could be performed inline one-by-one (i.e., after every table), or all together at

the end of the pipeline. P4FPGA takes the latter approach, which reduces latency. In

other words, the pipeline modifies a copy of the header, and changes are merged with

the actual header in the deparser stage.

Matching In P4FPGA, basic blocks for tables are implemented as FPGA hardware

modules that support get/put operations via a streaming interface. P4 allows users to

specify the algorithm used to match packets. Our P4FPGA prototype supports two

44

matching algorithms: ternary and exact-match. The ternary match uses a third-party

library. We implemented two versions of exact match ourselves, one using a fully-

associative content addressable memory (CAM) [26], and the other using a hash-based

lookup table. Users can choose the implementation strategy by using a command line

option when invoking the compiler. Note that because of the “programming with tables”

abstraction that P4 provides, some programs include tables without lookup keys, whose

purpose is solely to trigger an action upon every packet processed by the pipeline stage.

P4FPGA handles this corner case by not allocating any table resources to this stage.

Actions P4 actions can modify a field value; remove/add a header; or modify packet

metadata. Conceptually, each action operates on one packet at any given time, with all

temporary variable stored in metadata on the target. P4FPGA performs inline editing

to packet metadata and post-pipeline editing to packet headers. Modify actions create

a copy of the updated value stored in a memory that is merged with the original packet

header field in the deparser block. For actions that change a packet header length, basic

blocks are created before and after the deparser block, to perform re-alignment. For

example, to remove a packet header, the deparser marks the header as invalid in a bit

mask. The realignment block then shifts the remaining bytes forward to cover the gap

created by the removed header.

Control Flow P4 control flow constructs compose tables and actions into an acyclic

graph. A naı̈ve implementation would be to use a fixed pipeline. In such a design,

the runtime would use extra metadata to implement the logic of the source program.

However, because we target an FPGA, P4FPGA can map the control flow directly onto

the generated hardware design. Each node corresponds to a basic block followed by

a branch condition. We note that this is much more flexible than implementing con-

45

trol flow on an ASIC. During program execution, the parsed packet and metadata is

passed along the tree structure. At each node, the runtime evaluates the conditional and

passes the data to the next node along the appropriate branch, or performs a table lookup

depending on the rules specified in the control plane API. P4FPGA relies on pipeline

parallelism to achieve high throughput. In other words, at any given time, different

nodes in the tree can process different packets in parallel.

3.2.2 Fixed-Function Runtime

The P4FPGA fixed-function runtime provides the execution environment for packet pro-

cessing algorithms specified in P4. It defines an API that allows generated code to access

common functionality through a set of target-agnostic abstractions. Consequently, the

runtime system plays a crucial role in providing an efficient, flexible and portable envi-

ronment for packet processing applications. It must provide an abstract architecture that

is uniform across many different hardware platforms. It must also provide an efficient

medium to transport data across processing elements. Finally, the runtime system must

provide auxiliary functionalities to support control, monitoring, and debugging.

Note that P4 developers can create a variety of potential applications, ranging from

packet switching to NFV style hardware offloading for packet processing. These appli-

cations have different requirements from the architecture provided by a fixed function

runtime. To support these different use-cases, P4FPGA allows P4 developers to choose

either of two architectures: multi-port switching or bump-in-the-wire. The multi-port

switching architecture is suitable for network forwarding elements, such as switches and

routers, and for experimenting with new network routing protocols. The architecture in-

cludes an output cross-bar, as shown in Figure 3.4 to arbitrate packets to the appropriate

46

egress port. The bump-in-the-wire architecture is suitable for network functions and

network acceleration. It receives packets from a single input port, and forwards to a

single output port [117].

Below, we describe the design of the major components of the P4FPGA fixed func-

tion runtime. These components, indicated as grey boxes in Figure 3.4, include memory

management, transceiver management, and host communication.

Memory Management As packets arrive at the FPGA, they must be stored in mem-

ory for processing. This memory can be designed in two ways. A straight-forward

approach is to use FIFO queues, which forward packets through processing elements in

the order in which they are received. However, simple FIFO queues are not sufficient

for implementing more advanced packet-processing features, such as quality-of-service

guarantees. In particular, such features require re-ordering packets as they are processed.

Therefore, P4FPGA includes an optional memory buffer managed by a hardware

memory management unit (MMU). The MMU interface defines two functions: malloc

and free. The malloc function takes one parameter, the size of packet buffer to be

allocated rounded up to 256-byte boundary, and returns a unique packet identifier (PID).

The PID is similar to a pointer in C, and is used throughout the lifetime of the packet in

the pipeline. Upon the completion of packet transmission, the PID (and associated mem-

ory) is returned to the MMU to be reused for future packets, via a call to free. Users

can configure the amount of memory used for storing packets. By default, P4FPGA

allocates 65,536 bytes of on-chip block RAM (BRAM) per packet buffer.

Transceiver Management P4FPGA is portable across many hardware platforms. As

a result, it provides a transceiver management unit that enables it to use the media access

47

control (MAC) and physical (PHY) layers specific to a target platform. For instance, the

P4FPGA transceiver management unit uses separate protocols depending on whether

Altera or Xilinx is the target platform without requiring changes to the P4 program.

Host Communication P4FPGA integrates a host communication channel between the

FPGA and host CPU. This is useful for implementing the control channel and for de-

bugging. The host communication channel is built on top of the PCI express protocol,

which is the de-facto protocol for internal communication within network devices, such

as switches and routers. We provide both blocking and non-blocking remote procedure

calls (RPC) between software and hardware. For example, it is possible for a host pro-

gram to issue an non-blocking call to read hardware registers by registering a callback

function to receive the returned value. Similarly, a controller can program match tables

by issuing a function call with an encoded table entry as a parameter.

3.2.3 Control Plane API

In addition to generating code that implements the application-specific logic in the data

plane, P4FPGA also generates a control plane API that exposes a set of C++ functions

that allow users to insert/delete/modify match table entries and read/write stateful mem-

ory. Moreover, the generated interface includes functions to support debugging. Users

can inject packets via a packet capture (PCAP) trace, or can enable/disable an on-chip

packet generator and capturer.

48

3.2.4 Extension

One of the advantages of FPGAs over ASICs are that they are relatively more flexible

and programmable. P4 offers a relatively restrictive programming interface that is tar-

geted for network applications and is platform-agnostic by design. Therefore, it is some-

times necessary to execute additional functionality via externally defined functions. An

externally defined function could be used to access a state in a register or counter or

to execute custom logic, such as a checksum computation or encryption/decryption. In

P4, these are declared using extern blocks, and the implementation of these calls are

target specific.

P4FPGA allows users to implement externally defined functions in the hardware

description language of their choice. However, such functions pose a challenge for ef-

ficient code generation, since they may have high latency. For example, an external

function that accesses persistent states or requires complex logic may take a long time

to complete. If the processing pipeline were to block while waiting for the function

to return, it could significantly impact throughput. P4FPGA provides an asynchronous

implementation, so that processing of other packets can continue in parallel. This is

roughly analogous to multi-threading, but without the associated cost of context switch-

ing.

49

3.3 Implementation

3.3.1 Optimization

To ensure that the code generated by P4FPGA is efficient, we implemented a number of

optimizations at both the compiler and the micro-architectural level. Based on our expe-

rience, we have identified a few principles that we followed to improve the throughput

and latency of the packet processing pipeline. Below, we describe the optimizations

in the context of NetFPGA SUME platform, but the same principles should apply to

other platforms such as Altera DE5. For clarity, we present these principles in order of

importance, not novelty.

Leverage hardware parallelism in space and time to increase throughput. FPGAs

provide ample opportunities to improve system throughput by leveraging parallelism

in space, e.g., by increasing the width of the datapath. The throughput of a streaming

pipeline, r, is determined the datapath width, w and the clock frequency, f (r = w × f).

The maximum clock frequency for an FPGA is typically a few hundred MHz (a mid-end

FPGA ranges from 200 to 400 Mhz). Therefore, in order to reach a throughput of 40 to

100 Gbps, it is necessary to use a datapath width in the range of 100 to 1000 bits.

On the NetFPGA SUME platform, we target an overall system throughput of 40Gbps

on the 4 available 10Gbps Ethernet ports at 250 MHz. We used 128-bits for the parser

datapath and 512-bits for the forwarding pipeline datapath. The theoretical throughput

for the parser is 128 bits × 250 Mhz, or 32 Gbps. As a result, we replicate the parser at

each port to support parsing packets at 10 Gbps.

Another important form of hardware parallelism is pipeline parallelism. We clock

50

the P4 programmable pipeline at 250 MHz. If we process a single packet in every

clock cycle, we would be able to process 250 Mpps (million packet per second). At

10 Gbps, the maximum packet arrival rate is 14.4 Mpps for 64 byte packets. At 250

Mpps, we should be able to handle more than sixteen 10 Gbps ports simultaneously

with one P4 programmable pipeline. Of course, the theoretical maximum rate does not

directly translate to actual system performance. Nonetheless, we conducted extensive

pipelining optimizations to ensure that all generated constructs were fully pipelined. In

other words, control flow, match tables and action engines are all fully pipelined.

Transform sequential semantics to parallel semantics to reduce latency. The P4

language enforces sequential semantics among actions in the same action block, mean-

ing that side effects of a prior action must be visible to the next. A conservative compi-

lation strategy that respects the sequential semantics would allocate a pipeline stage for

each action. Unfortunately, this strategy results in sub-optimal latency, since each stage

would add one additional clock cycle to the end-to-end latency. P4FPGA optimizes la-

tency by leveraging the fact that the hardware inherently supports parallel semantics. As

a result, we opportunistically co-locate independent actions in the same pipeline stage

to reduce the overall latency of an action block.

Select the right architecture for the job. Network functions can be broadly divided

into two sub-categories: those that need switching and those that do not. For example,

network encryption, filtering, and firewalling can be enforced on a per-port basis. This is

especially true if interface speed can be increased to 50 or 100Gbps, when CPUs barely

have enough cycles to keep up with data coming in from one interface. On the other

hand, prototyping network forwarding elements on FPGAs requires switching capabil-

ity. As mentioned in Section 3.2.2, P4FPGA allows users to select the architecture most

51

appropriate for their needs.

Use a resource-efficient components to implement match tables. In P4FPGA gen-

erated pipelines, match tables dominate FPGA resource consumption. This is because

FPGAs lacks hardened content-addressable memory (CAM), an unfortunate reality of

using FPGAs for networking processing. Although one can implement CAM using

existing resources on FPGA, such as Block RAMs or LUTs, it is not efficient. High-

end FPGAs have more resources on-chip to implement CAMs, but they also come at a

premium price. To alleviate the situation, P4FPGA uses resource-efficient hash-based

methods for table lookup. The compiler uses these more efficient implementation tech-

niques by default. But, users may choose to use more expensive CAM implementations

by specifying a compiler flag.

Eliminate dead metadata A naı̈ve P4 parser implementation would extract full

header and metadata from packets by default. This can be wasteful if the extracted

headers are not used in the subsequent pipeline. P4FPGA analyzes all match and ac-

tion stages, and eliminates unused header fields and metadata from the extracted packet

representation.

Use non-blocking access for external modules. Stateful processing is expensive on

high-performance packet-processing pipelines. Complex operations may require multi-

ple clock cycles to finish, which can negatively affect performance if pipelining is only

performed at the function level. P4FPGA implements fine-grained pipelining on stateful

elements to maintain high throughput. For example, a memory read operation requires

issuing a read request to memory and waiting for the corresponding response. Due to

the high latency of memory, the response may only come after multiple cycles of delay.

52

In P4FPGA, we support split-phase read such as read request and response can happen

at different clock cycle. Meanwhile, the pipeline can continue processing other packets.

3.3.2 Prototype

Our prototype P4FPGA implementation consists of a C++-based compiler along with

a Bluespec-based runtime system. For the frontend, we reused P4.org’s C++ compiler

frontend to parse P4 source code and generate an intermediate representation [154].

We designed a custom backend for FPGAs, which consists of 5000 lines of C++ code.

The runtime is developed in a high-level hardware description language Bluespec [147].

Bluespec provides many of the higher level hardware abstractions (e.g., FIFO with back-

pressure) and the language includes a rich library of components, which makes devel-

opment easier. The runtime is approximately 10,000 lines of Bluespec. We relied on

Bluespec code from the Connectal project [96] to implement the control plane channel.

We also implemented mechanisms to replay pcap traces, access control registers, and

program dataplane tables. All code is publicly available under an open-source license.1

Complex FPGA-based systems often require integration with existing intellectual

property (IP) components from other vendors and P4FPGA is no exception. We allow

third-party IPs to be integrated with the existing P4FPGA runtime system as long as

those components conform to the interfaces exposed by P4FPGA runtime. For example,

we currently support IP cores such as MAC/PHY and Ternary CAM (TCAM) provided

by FPGA vendors and commercial IP vendors [35].

1http://p4fpga.github.io

53

3.4 Evaluation

In this section, we explore the performance of the P4FPGA. Our evaluation is divided

into two main sections. First, we evaluate the ability of P4FPGA to handle a diverse set

of P4 applications. Then we use a set of microbenchmarks to evaluate the individual

components of P4FPGA in isolation.

Toolchain and hardware setup We evaluate the performance of P4FPGA generated

designs against a set of representative P4 programs. Each program in our benchmark

suite is compiled with the P4FPGA compiler into Bluespec source code, which is then

processed by a commercial compiler from Bluespec Inc. to generate Verilog source

code. Next, the Verilog source code is processed by the standard Vivado 2015.4 tool

from Xilinx, which performs synthesis, placement, routing and bitstream generation.

All of the above steps are automated with a Makefile. The compilation framework

supports both the Altera tool suite, Quartus, and Xilinx tool suite, Vivado. For this

evaluation, we only used Vivado. We deployed the compiled bitstream on a NetFPGA

SUME platform with a Xilinx Virtex-7 XC7V690T FPGA, with 32 high-speed serial

transceivers to provide PCIe (Gen3 x8) communication and 4 SFP+ ports (10Gbps Eth-

ernet).

For packet generation, we built a custom packet generator that is included as part of

the P4FPGA runtime. It generates packets at a user-specified rate. We also provide a

utility to program the packet generator with a packet trace supplied in the PCAP format

or to configure/control the packet generator from userspace. Similarly, we provide a

built-in packet capture tool to collect output packets and various statistics.

54

Name LoC in P4 LoC in Bluespec Framework

l2l3.p4 170 1281 33295
mdp.p4 205 1812 33295
paxos.p4 385 3306 33295

Table 3.1: Example applications compiled by P4FPGA and lines of code (LoC) in P4
and Bluespec. l2l3.p4 implements a L2/L3 router, mdp.p4 implements a variable packet
length, financial trading protocol parser, paxos.p4 implements a stateful consensus pro-
tocol.

3.4.1 Case Studies

To illustrate the broad applicability of P4FPGA, we implemented three representative

P4 applications as case studies. We chose these examples because (i) they represent

non-trivial, substantial applications, (ii) they illustrate functionality at different layers

of the network stack, and (iii) they implement diverse functionality and highlight P4’s

potential.

Table 3.1 shows the lines of code in P4 for each of these applications. As a point

of comparison, we also report the lines of code for the generated Bluespec code. While

lines of code is not an ideal metric, it does help illustrate the benefit of high-level lan-

guages like P4, which require orders-of-magnitude fewer lines of code. Below, we

describe each of these applications in detail.

L2/L3 Forwarding P4 was designed around the needs of networking applications

that match on packet headers and either forward out of a specific port, or drop a packet.

Therefore, our first example application performs Layer 2 / Layer 3 forwarding. It uses

the switching architecture, and routes on the IP destination field.

55

Paxos Paxos [105] is one of the most widely used protocols for solving the problem of

consensus, i.e., getting a group of participants to reliably agree on some value used for

computation. The protocol is the foundation for building many fault-tolerant distributed

systems and services. While Paxos is traditionally implemented as an application-level

service, recent work demonstrates that significant performance benefits can by achieved

by leveraging programmable data planes to move consensus logic into network de-

vices [56, 119]. The P4 implementation [56] defines a custom header for Paxos mes-

sages that is encapsulated inside a UDP packet. The program keeps a bounded history

of Paxos packets in registers, and makes stateful routing decisions based on compar-

ing the contents of arriving packets to stored values. Paxos uses a bump-in-the-wire

architecture.

Market Data Protocol Many financial trading strategies depend on the ability to re-

act immediately to changing market condition and place orders at high speeds and fre-

quencies. Platforms that implement these trading algorithms would therefore benefit

by offloading computations into hardware using custom packet headers and processors.

As a proof-of-concept for how P4 could be used for financial applications, we imple-

mented a commonly used protocol, the Market Data Protocol (MDP). MDP is used by

the Chicago Mercantile Exchange. Essentially, MDP is a L7 load balancer. An MDP

P4 implementation complicated by the fact that the protocol header is variable length.

Our P4 implementation of MDP can address the header variable length and also parse

input packet streaming, filter duplicated messages and extract important packet fields

for additional processing.

Processing time and latency Our evaluation focuses on two metrics: processing time

and latency. Table 3.2 shows the processing time for each application on a single FPGA.

56

App Size Parser Table Memory Deparser

l2l3

64 2 31 21 11
256 2 31 23 32
512 2 31 24 66
1024 2 31 23 130

mdp
256 15 9 23 34
512 35 9 24 68
1024 88 9 23 130

paxos 144 6 42 21 12

Table 3.2: Processing time breakdown, cycles @ 250MHz.

Mode Packet Size

64 256 1024 1518

Cut-through 1.1us 1.2us 1.4us 1.4us
Store-and-forward 5us 4.3us 5.5us 6.1us
P4FPGA (L2/L3) 0.34us 0.42us 0.81us 1.05us

Table 3.3: Latency comparing to vendors. The numbers of cut-through and store-and-
forward switches are from [193]

The numbers are in term of cycles running at 250MHz, where each cycle is 4 nanosec-

onds. We measured the packet-processing time of each application on small and large

packets. Since the L2/L3 application only parses Ethernet and IP headers, parsing only

takes 2 cycles, or 8 ns. On the contrary, the MDP application spends more time parsing

because it performs variable-length header processing and inspects packet payload for

market data. Match and action stages are constant time for each application. For exam-

ple, L2/L3 spends 31 cycles or 128 ns in match and action stage. The time is spent on ta-

ble look-up, packet field modification and packet propagation through multiple pipeline

stages. The amount of time spent in match and action stage depends on the number of

pipeline stages and the complexity of actions performed on a packet. Memory access

accounts for time taken to access a shared memory buffer, and therefore represents a

57

constant overhead among all packets (+/- measurement error). The time required for the

deparser, which must reassemble and transmit the packet, is proportional to the packet

size.

We define latency as the time from when the first bit of packet enters the P4 pipeline

(right after the RX channel in Figure 3.4) until the first bit of packet exits the pipeline

(right before the TX channel 3.4). In all three cases, P4FPGA introduces less than 300ns

of latency. To place the latency numbers in context, we report the performance results

from two vendors in Table 3.3. As we can see, P4FPGA is able to offer very low latency

comparable to commercial off-the-shelf switches and routers.

Finally, Figure 3.5 summarizes the throughput experiments for all three applications.

For the L2/L3 application, we see it is able to process all packet sizes at line rate. Note

that for small packets, such as 64-byte packets, the theoretical line rate is less the 10Gbps

due to the minimum inter-packet gap requirement of Ethernet. The MDP application

shows similar throughput to the L2/L3 application. The Paxos application, however, has

slightly lower throughput compared to the other two, due to the heavy use of stateful

register operations. We note, though, that the throughput for Paxos far exceeds that of

software-based implementations. [56]

3.4.2 Microbenchmarks

The next part of our evaluation focuses on a set of microbenchmarks that evaluate dif-

ferent aspects of P4FPGA in isolation. We investigate the following questions:

• How does runtime perform?

• How does overall pipeline perform?

58

 0

 2

 4

 6

 8

 10

 12

64 256 512 1024 256 512 1024 144

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

Packet Size (Bytes)

L2/L3
MDP

Paxos

Figure 3.5: Application throughput for L2L3, MDP and Paxos.

• How much of the FPGA resources are required for the pipeline and runtime?

We focus on three metrics for evaluation: throughput, latency and resource utilization

on the FPGA. We present the details of these microbenchmarks below.

Fixed-Function Runtime

The fixed-function runtime system must sustain line-rate forwarding at 4 x 10Gbps to

avoid being a bottleneck to overall system performance. To verify that P4FPGA is

able to satisfy this requirement, we measured the raw throughput of the fixed-function

runtime with an empty packet processing pipeline (no table, no action in ingress or

egress pipeline).

The results are shown in Figure 3.6. In this experiment, six packet generators are

configured and each generates packets at the full line rate, 10Gbps. We loaded a packet

trace with packet sizes ranging from 64 to 1516 bytes and replayed the packet trace one

59

 0

 10

 20

 30

 40

 50

 60

64 128 256 512 1024 1516

T
h
ro

u
g
p
u
t
(G

b
p
s
)

Packet Size (Bytes)

million times. The fixed function runtime is able to sustain over 40Gbps for all packet

sizes.

Programmable pipeline

We evaluated the performance of a generated P4 pipeline with a set of micro-

benchmarks that focused on each key language construct isolation: parsers, tables, and

actions. As a point of comparison, we also report results for running the same exper-

iments with the PISCES [179] software switch. PISCES extends Open vSwitch [152]

with a protocol-independent design. In all cases, PISCES uses DPDK [64] to avoid the

overhead of the kernel network stack. Note, to make the comparison equal, we used

only two ports for PISCES.

Parser We used the packet generator to send 256-byte packets with an increasing

number of 16-bit custom packet headers. We measured both latency and throughput,

and the results are shown in Figures 3.7 and 3.8. As expected, we see that parsing la-

60

 0

 20

 40

 60

 80

 100

64 128 256 512 1024 1516

P
a
c
k
e
t
P

e
r

S
e
c
o
n
d
 (

M
p
p
s
)

Packet Size (Bytes)

Figure 3.6: Runtime forwarding performance in gigabits per second (left) and millions
packets per second (right) with a simple forwarding application on a 6-port switching
architecture.

tency increases as we increase the number of extracted headers. In terms of absolute

latency, P4FPGA is able to leverage the performance of FPGAs to significantly reduce

throughput. P4FPGA took less than 450 ns to parse 16 headers, whereas PISCES took

6.5us. The results for throughput are similar. For both P4FPGA and PISCES, the parser

throughput decreases as the number of headers increases. As expected, P4FPGA signif-

icantly outperforms PISCES in terms of absolute throughput as well as the number of

headers that parse without performance degradation.

Table In this experiment, we compiled a set of synthetic programs with an increasing

number of pipeline stages (1 to 32). We measured the end-to-end latency from ingress

to egress. The result is shown in figure 3.9. Although the absolute latency is much better

for P4FPGA, the trend shows that the processing latency increases with the number of

tables. In contrast, the latency for PISCES remains constant. This is because PISCES

61

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 2 4 8 12 16

L
a
te

n
c
y
 (

n
s
)

Number of Headers

p4fpga
pisces

Figure 3.7: Parser Latency v.s. Number of Headers parsed

 0

 2

 4

 6

 8

 10

1 4 8 12 16 20 24 28 32

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

Header Number

P4FPGA
PISCES

Figure 3.8: Parser Throughput v.s. Number of Headers parsed

implements an optimization that fuses multiple match-action pipeline stages into a single

match-action rule. We have not yet implemented this optimization for P4FPGA.

62

 0

 1000

 2000

 3000

 4000

 5000

1 4 8 16 32

L
a
te

n
c
y
 (

n
s
)

Number of tables

p4fpga
pisces

Figure 3.9: Processing latency versus number of tables

Action In this experiment, we evaluate how the action complexity can affect through-

put. We vary the number of header field writes from 8 to 64. All field write operations

are independent, meaning that they write to different fields in the packet header. As

a result P4FPGA is able to leverage hardware parallelism to perform all write opera-

tions within the same clock cycle, as there is no dependency between any operations.

Note that this faithfully implements the sequential semantics of the original P4 source

program, even though all actions are performed in parallel. As shown in Figure 3.10,

end-to-end packet processing latency in P4FPGA remains the same, at 364 ns. This is

in contrast to PISCES, which consumes more CPU cycles to process write operations,

as the operations are performed in sequence on a CPU target. [179] In other words, the

absolute latency is much higher on a software target, and also increases with the number

of write operations. In contrast, with P4FPGA, the latency remains low and constant

independent of the number of writes in a stage.

63

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

8 16 32 40 48 54 64

L
a
te

n
c
y
 (

n
s
)

Number of actions

p4fpga
pisces

Figure 3.10: Pipeline Latency v.s. Number of Actions.

Resource Utilization

We report the resource utilization of the FPGA in two parts: the resource consumed by

the fixed function runtime which is common to all P4 programs; and the resource con-

sumed by individual P4 constructs which is variable depending on parameters specified

by P4 program. We quantify resource consumption with the number and percentage of

look-up tables (LUTs) and memory consumed by each block.

The runtime subsystem implements PCIe host communication, and the MAC and

PHY layers of the Ethernet protocol. As shown in Table 2.1, the total resource con-

sumption of the runtime is about 7.5% of total available LUTs and 2.3% of available

memory blocks, which leaves many of the resources available to implement the actual

logic of a P4 program.

Next, we profile resource consumption of major P4 constructs: match table, parser,

deparser and action. Match tables are implemented with Content Addressable Mem-

64

Slice LUTs Block RAMs MHz

PCIe 6377 9 250
10G MAC x4 8174 0 156
10G PHY x4 10422 0 644.5
Connectal 7867 25 250
Area Used 32700 (7.5%) 34 (2.3%) -

Table 3.4: Area and frequency of fixed function runtime.

Hardware
Key Size

#Entries % BRAM #Flip-Flops #LUTs
(Bits)

BCAM

36 1024 2.2% (32) 0.26% (2280) 0.59% (2552)
144 1024 8.7% (128) 0.92% (7976) 2.2% (9589)
288 1024 17.4% (256) 1.8% (15944) 4.5% (19350)

TCAM
72 2048 2.7% (40) 0.56% (4900) 2.1% (9100)
144 2048 3.2% (48) 0.63% (5482) 2.8% (12033)
288 2048 3.9% (58) 0.85% (7430) 4.4% (18977)

HASH
72 1024 0.7% (10.5) 0.12% (1053) 0.27% (1185)
144 1024 0.8% (12.5) 0.16% (1440) 0.32% (1395)
288 1024 1.1% (16.5) 0.25% (2232) 0.46% (2030)

Table 3.5: BCAM and TCAM Resource Utilization on Virtex 7 XCVX690T, which has
1470 BRAM blocks, 866400 Flip-flops and 433200 LUTs. We show resource utilization
as percentage as well as actual amount of resource used.

ory (CAM) to perform key lookup, and regular memory to corresponding action for

a matched key entry. Unlike ASICs, FPGAs lack native support for CAM, and as a

result, we had to emulate CAM by implementing it with regular memory blocks. We

evaluated three different CAM implementations on the FPGA: binary CAM for imple-

menting exact match, ternary CAM for implementing ternary and longest prefix match,

and hash-based CAM for exact match.

As shown in Table 3.5, we can implement up to a 288-bit key Binary CAM (BCAM),

65

Ternary CAM (TCAM), or a hash-based associative memory with minimum resource

utilization. The commercial-grade TCAM implementation is more efficient than our

BCAM. We suspect that the difference is due to both implementation efficiency and

internal architecture of these two CAM technologies. But, the hash-based associative

memory implementation is the most efficient among all three implementations. [61] If

we were to use the whole FPGA for only a CAM with a 288-bit key, then a BCAM,

TCAM, and hash-based associative memory can fit up to 6K, 53K, 93K entries on a

Virtex-7 FPGA, respectively. To put these numbers into context, a Mellanox Spectrum

ASIC allows 9K entries of 288 bit rules in a common TCAM table shared between

ingress and egress pipeline.

66

3.5 Application: Hardware Accelerated Consensus Protocol

This work appears in Network Hardware-Accelerated Consensus as a technical report,

with co-authors Huynh Tu Dang, Pietro Bressana, Ki Suh Lee, Hakim Weatherspoon,

Marco Canini, Fernando Pedone, Robert Soule.

In this section, we described an emerging application developed using P4FPGA in

more details. In particular, we describe an implementation of Paxos in the P4 language.

Paxos [105] is one of the most widely used protocols for solving the problem of con-

sensus, i.e., getting a group of participants to reliably agree on some value used for

computation. Paxos is used to implement state machine replication, [104,178], which is

the basic building block for many fault-tolerant systems and services that comprise the

core infrastructure of data centers such as OpenReplica, [153] Ceph, [48], and Google’s

Chubby. [45] Since most data center applications critically depend on these services,

Paxos has a dramatic impact on the overall performance of the data center.

While Paxos is traditionally implemented as an application-level service, there are

significant performance benefits to be gained by moving certain Paxos logic into net-

work devices. Specifically, the benefits would be twofold. First, since the logic tra-

ditionally performed at servers would be executed directly in the network, consensus

messages would travel fewer hops, and can be processed “on the wire,” resulting in

decreased latencies. Second, rather than executing server logic (including expensive

message broadcast operations) in software, the same operations could be implemented

in specialized hardware, improving throughput. Although Paxos is a conceptually sim-

ple protocol, there are many details that make an implementation challenging. Conse-

quently, there has been a rich history of research papers that describe Paxos implemen-

tations, including attempts to make Paxos Simple, [106] Practical, [136] Moderately

67

Coordinator

Acceptor 1

. . .

Acceptor 2

Acceptor 3

Learners

. . .

(up to n)

Proposer

Phase 2B

Phase 2B

Phase 2B

Phase 2A

Request

Figure 3.11: The Paxos protocol Phase 2 communication pattern.

Complex, [194] and Live. [50]

Our implementation of Paxos in the P4 is interesting beyond presenting the Paxos

algorithm in a new syntax. It helps expose new practical concerns and design decisions

for the algorithm that have not, to the best of our knowledge, been previously addressed.

For example, a switch-based implementation cannot synthesize new messages. Instead,

we have to map the Paxos logic into a “routing decision.” Moreover, targeting packet

headers and switch hardware imposes memory and field size constraints not present in

an application library implementation.

3.5.1 Background

Paxos [105] is perhaps the most widely used consensus protocol. Participants are pro-

cesses that communicate by exchanging messages. A participant may simultaneously

play one or more of four roles: proposers propose a value; acceptors choose a single

value; and learners learn what value has been chosen. One process, typically a proposer

68

or acceptor, acts as the coordinator, which ensures that the protocol terminates and es-

tablishes an ordering of messages. The coordinator is chosen via an application-specific

protocol, called leader election, which is external to the Paxos protocol.

A Paxos instance is one execution of consensus. An instance begins when a pro-

poser issues a request, and ends when learners know what value has been chosen by

the acceptor. Below, we describe one instance of Paxos. However, throughout this sec-

tion, references to Paxos implicitly refer to multiple instances chained together (i.e.,

Multi-Paxos). [50] The protocol proceeds in a sequence of rounds. Each round has two

phases.

Phase 1. The coordinator selects a unique round number (rnd) and asks the acceptors to

vote for the value in the given instance. Voting means that they will reject any requests

(Phase 1 or 2) with round number less than rnd. Phase 1 is completed when a majority-

quorum Q of acceptors confirms the promise to the coordinator. If any acceptor already

accepted a value for the current instance, it will return this value to the coordinator,

together with the round number received when the value was accepted (vrnd).

Phase 2. Figure 3.11 illustrates the communication pattern of Paxos participants during

Phase 2. The coordinator selects a value according to the following rule: if no acceptor

in Q returned an already accepted value, the coordinator can select any value. If however

any of the acceptors returned a value in Phase 1, the coordinator is forced to execute

Phase 2 with the value that has the highest round number vrnd associated to it. In

Phase 2, the coordinator sends a message containing a round number (the same used in

Phase 1.) Upon receiving such a request, an acceptors accepts it and broadcasts it to

all learners, unless it has already received another message (Phase 1 or 2) with a higher

round number. Acceptors update their rnd and vrnd variables with the round number in

the message. When a quorum of acceptors accepts the same round number, consensus

69

Proposer

Acceptor
(switch)

Coordinator
(switch)

Acceptor
(switch)

Acceptor
(switch)

Proposer

Learner Learner

Figure 3.12: A switch-based Paxos architecture. Switch hardware is shaded grey, and
commodity servers are colored white.

is reached: the value is permanently bound to the instance, and nothing will change this

decision. Acceptors send a 2b message to the learners with the accepted value. When a

learner recieves a majority quorum of messages, they can deliver the value.

As long as a nonfaulty coordinator is eventually selected, there is a majority quorum

of nonfaulty acceptors, and at least one non-faulty proposer, every consensus instance

will eventually decide on a value.

3.5.2 Design

Figure 3.12 illustrates the architecture of a switch-based Paxos, which we describe in

detail below. In the figure, switch hardware is shaded grey, and commodity servers are

colored white.

Overview. As with any Paxos implementation, there are four roles that participants

70

in the protocol play: proposers, coordinators, acceptors, and learners. However, while

proposers and learners are implemented as application libraries that run on commodity

servers, a switch-based Paxos differs from traditional implementations in that coordina-

tor and acceptor logic executes on switches.

An instance of consensus is initiated when one of the proposers sends a message

to the coordinator. The protocol then follows the communication pattern illustrated in

Figure 3.112. Although the Paxos protocol described in Section 3.5.1 has two phases,

Phase 1 does not depend on any particular value, and can be run in advance for a large

bounded number of instances. [105] The pre-computation needs to be re-run under two

scenarios: either the Paxos instance approaches the number of pre-computed instances,

or the device acting as coordinator changes. (for example due to failure)

System assumptions. It is important to note that the Paxos protocol does not guarantee

or impose an ordering on consensus instances. Rather, it guarantees that for a given in-

stance, a majority of participants agree on a value. So, for example, the i-th instance of

consensus need not complete before the (i + 1)-th instance. The application using Paxos

must detect if a given instance has not reached consensus. In such an event, the instance

may be re-initiated. The protocol naturally ensures that re-executing an already agreed-

upon instance cannot change the value. The process of detecting a missing instance and

re-initiating consensus depends on the details of the particular application and deploy-

ment. For example, if proposers and learners are co-located, then a proposer can observe

if an instance has reached consensus. If they are deployed on separate machines, then

proposers would have to employ some other process (e.g., using acknowledgments and

timeouts).
2In the figure, the initial message is called a request. This is a slight abuse of terminology, since the

term request often implies a response, or a client-server architecture, neither of which is required in Paxos.
However, calling it a request helps to distinguish it from other messages.

71

We should also point out that the illustration in Figure 3.12 only shows one coor-

dinator. If the other participants in the Paxos protocol suspect that the switch is faulty,

the coordinator functionality can be moved either to another switch or to a server that

temporarily assumes the role of coordinator. The specifics of the leader-election process

are application-dependent. We have elided these details from the figure to simplify the

presentation of our design.

Prototype implementation. The proposer and learner code are written as Python mod-

ules, while the coordinator and acceptor code are written in P4. All messages are sent

over UDP to an IP Multicast address. Using TCP is unnecessary, since we don’t require

reliable communication. Using IP Multicast is expedient, since it is supported by most

switch hardware, and allows us to reuse readily available functionality to send messages

to a group of receivers.

Paxos header. In a traditional Paxos implementation, each participant receives mes-

sages of a particular type, (e.g., Phase 1A, 2A, etc.) executes some processing logic, and

then synthesizes a new message which it sends to the next participant in the protocol.

However, switches cannot craft new messages; they can only modify fields in the

header of the packet that they are currently processing. Therefore, a switch-based Paxos

needs to map participant logic into forwarding decisions, and each packet must contain

the union of all fields in all Paxos messages.

Figure 3.13 shows the P4 specification of a common packet header for Paxos mes-

sages. To keep the header small, the semantics of some of the fields change depending

on which participant sends the message. The fields are as follows: msgtype distin-

guishes the various Paxos messages (e.g., 1A, 2A, etc.); inst is the consensus instance

number; rnd is either the round number computed by the proposer or the round number

72

for which the acceptor has cast a vote; vrnd is the round number in which an acceptor

has cast a vote; swid identifies the sender of the message; and value contains the

request from the proposer or the value for which an acceptor has cast a vote.

Given the storage limitations of the target platform, there are practical concerns that

must be addressed in a switch-based Paxos that are not normally considered in a tradi-

tional implementation. First, the number of instances that can be pre-computed in Phase

1 is bound by the size of the inst field. If this field is too small, then consensus could

only be run for a short time. On the other hand, the coordinator and acceptor code must

reserve sufficient memory and make comparisons on this value, so setting the field too

large could potentially impact performance. Second, it would seem natural to store the

value in the packet payload, not the packet header. However, Paxos must maintain

the history of values, and to do so in P4, the field must be parseable, and stored in a

register. We are therefore forced to keep value in the header. Third, not all values

in value will have the same size. This size is dependent on the application. While

P4 plans to support variable length fields, the current version only supports fixed length

fields. Since we have to conservatively set the value to the size of the largest value, we

are storing potentially unused bytes.

We will need to run experiments on an actual hardware deployment to determine

the appropriate field sizes. For now, our implementation uses reasonable default values.

Constants such as message types are implemented with #define macros, since there

is no notion of an enumerated type in P4.

Proposer. Proposers initiate an instance of consensus. The proposer logic is imple-

mented as a library that exposes a simple API to the application. The API consists of a

single method submit, which is used by the application to send values. The proposer

component creates a switch Paxos message to send to the coordinator, and writes the

73

1 header_type paxos_t {
2 fields {
3 msgtype : 8;
4 inst : INST_SIZE;
5 rnd : 8;
6 vrnd : 8;
7 swid : 64;
8 value : VALUE_SIZE;
9 }

10 }
11
12 parser parse_paxos {
13 extract(paxos);
14 return ingress;
15 }

Figure 3.13: Paxos packet header and parsers.

value into the header.

Coordinator. A coordinator brokers requests on behalf of proposers. They ensure

that only one process submits a message to the protocol for a particular instance (thus

ensuring that the protocol terminates), and impose an ordering of messages. When

there is a single coordinator, as is the case in our prototype, a monotonically increasing

sequence number can be used to order the messages. This sequence number is written

to the inst field of the header.

A coordinator should only receive request messages, which are sent by the proposer.

When messages arrive, they only contain a value. Mapping coordinator logic to stateful

forwarding rules and actions, the switch must perform the following operations: write

the current instance number and an initial round number into the message header; in-

crement the instance number for the next invocation; store the value of the new instance

number; and broadcast the packet to all acceptors.

Figure 3.14 shows the P4 implementation. One conceptual challenge is how to ex-

74

1 register reg_inst {
2 width : INST_SIZE;
3 inst_count : 1;
4 }
5
6 action handle_request() {
7 modify_field(paxos.msgtype, PAXOS_2A);
8 modify_field(paxos.rnd, 0);
9 register_read(paxos.inst, reg_inst, 0);

10 add_to_field(paxos.inst, 1);
11 register_write(reg_inst, 0, paxos.inst);
12 }
13
14 table tbl_sequence {
15 reads { paxos.msgtype : exact; }
16 actions { handle_request; _nop; }
17 size : 1;
18 }
19
20 control ingress {
21 /* process other headers */
22 if (valid(paxos)) {
23 apply(tbl_sequence);
24 }
25 }

Figure 3.14: Coordinator code.

press the above logic as match+action table applications. When packets arrive in the

control block (line 20), the P4 program checks for the existence of the Paxos header

(line 22), and if so, it passes the packet to the table, tbl sequence (line 23). The

table performs an exact match on the msgtype field, and if it receives Phase 2A mes-

sage, it will invoke the handle 2a action. The action updates the packet header fields

and persistent state, relying on a register named reg inst (lines 1-4) to read and store

the instance number.

Acceptor. Acceptors are responsible for choosing a single value for a particular in-

stance. For each instance of consensus, each individual acceptor must “vote” for a

75

value. The value can later be delivered if a majority of acceptors vote the same way.

The design of a switch-based implementation is complicated by the fact that acceptors

must maintain and access the history of proposals for which they have voted. This his-

tory ensures that acceptors never vote for different values in a particular instance, and

allows the protocol to tolerate lost or duplicate messages.

Acceptors can receive either Phase 1A or Phase 2A messages. Phase 1A messages

are used during initialization, and Phase 2A messages trigger a vote. The logic for han-

dling both messages, when expressed as stateful routing decisions, involves: reading

persistent state; modifying packet header fields; updating the persistent state; and for-

warding the modified packets. The logic differs in which header fields are read and

stored.

Figure 3.15 shows the P4 implementation of an acceptor. Again, the program must

be expressed as a sequence of match+action table applications, starting at the control

block (line 56). Acceptor logic relies on several registers, indexed by consensus in-

stance, to store the history of rounds, vrounds, and values (lines 9-22). It also

defines two actions for processing Phase 1A messages (lines 33-39) and Phase 2A mes-

sages (lines 41-47). Both actions require that the swid field is updated, allowing other

participants to identify which acceptor produced a message.

The programming abstractions make it somewhat awkward to express the compar-

ison between the rnd number in the arriving packet header, and the rnd number kept

in storage. To do so, the arriving packet must be passed to a dedicated table tbl rnd,

which triggers the action read rnd. The action reads the register value for the instance

number of the current packet, and copies the result to the metadata construct (line 30).

Finally, the number in the metadata construct can be compared to the number in the

current packet header (line 60).

76

Learner. Learners are responsible for replicating a value for a given consensus instance.

Learners receive votes from the acceptors, and “deliver” a value if a majority of votes

are the same (i.e., there is a quorum). The only difference between the switch-based

implementation of a learner and a traditional implementation is that the switch-based

version reads the relevant information from the packet headers instead of the packet

payload.

Learners only receive Phase 2B messages. When a message arrives, each learner ex-

tracts the instance number, switch ID, and value. The learner maintains a data structure

that maps a pair of instance number and switch ID to a value. Each time a new value

arrives, the learner checks for a majority-quorum of acceptor votes. A majority is equal

to f + 1 where f is the number of faulty acceptors that can be tolerated.

Optimizations. Implementing Paxos in P4 requires 2 f + 1 acceptors. Considering that

acceptors in our design are network switches, this could be too demanding. However,

we note that one could exploit existing Paxos optimizations to spare resources. Cheap

Paxos [108] builds on the fact that only a majority-quorum of acceptors is needed for

progress. Thus, the set of acceptors can be divided into two classes: first-class acceptors,

which would be implemented in the switches, and second-class acceptors, which would

be deployed in commodity servers. In order to guarantee fast execution, we would

require f +1 first-class acceptors (i.e., a quorum) and f second-class acceptors. Second-

class acceptors would likely fall behind, but would be useful in case a first-class acceptor

fails. Another well-known optimization is to co-locate the coordinator with an acceptor,

which in our case would be an acceptor in the first class. In this case, a system configured

to tolerate one failure (f = 1) would require only two switches.

77

3.5.3 Discussion

The process of implementing Paxos in P4 highlights future areas of research for design-

ers of consensus protocols. We expand the discussion of these two topics below.

Impact on P4 Language P4 provides a basic set of primitives that are sufficient for

implementing Paxos. Other languages, such as POF [186] and PX, [41] offer similar

abstractions. Implementing Paxos provides an interesting use case for dataplane pro-

gramming languages. As a result of this experience, we developed several “big-picture”

observations about the language and future directions for extensions or research.

P4 presents a paradigm of “programming with tables” to developers. This paradigm

is somewhat unnatural to imperative (or functional) programmers, and it takes some

time to get accustomed to the abstraction. It also, occasionally, leads to awkward ways

of expressing functionality. An example was already mentioned in the description of the

acceptor logic, where performing a comparison required passing the packet to a table, to

trigger an action, to copy a stored value to the metadata construct. It may be convenient

to allow storage accesses directly from control blocks.

Although P4 provides macros that allow source to be imported from other files (e.g.,

#include), the lack of a module system makes it difficult to isolate functionality,

and build applications through composition, as is usually suggested as best practice for

software engineering. For example, it would be nice to be able to “import” a Paxos

module into an L2 learning switch. This need is especially acute in control blocks,

where tables and control flow have to be carefully arranged. As the number of tables, or

dataplane applications, grows, it seems likely that developers will make mistakes.

Attempting to access a register value from an index that exceeds the size of the array

78

results in a segmentation fault. Obviously, performing bounds checks for every memory

access would add performance overhead to the processing of packets. However, the al-

ternative of allowing unsafe operations that could lead to failures is equally undesirable.

It may be useful in the future to provide an option to execute in a “safe mode,” which

would provide run-time boundary checks as a basic precaution. It would also be useful

to provide a way for programs to catch and recover from errors or faults.

While P4 provides a stateful memory abstraction, (a register,) there is no explicit way

of controlling the memory layout across a collection of registers and tables, and its im-

plementation is target dependent. In our case, the tables tbl rnd and tbl acceptor

end up realizing a pipeline that reads and writes the same shared registers. However, de-

pending on the target, the pipeline might be mapped by the compiler to separate memory

or processing areas that cannot communicate, implying that our application would not be

supported in practice. It would be helpful to have “annotations” to give hints regarding

tables and registers that should be co-located.

Although the standard Paxos protocol, as described in this section, does not rely on

message ordering, several optimizations do. [56,107,165] One could imagine modifying

the data-plane to enforce ordering constraints in switch hardware. However, there are

currently no primitives in P4 that would allow a programmer to control packet ordering.

Impact on Paxos Protocol Consensus protocols typically assume that the network

provides point-to-point communication, and nothing else. As a result, most consensus

protocols make weak assumptions about network behavior, and therefore, incur over-

head to compensate for potential message loss or re-ordering. However, advances in

network hardware programmability have laid a foundation for designing new consensus

protocols which leverage assumptions about network computing power and behavior in

79

order to optimize performance.

One potentially fruitful direction would be to take a cue from systems like Fast

Paxos [107] and Speculative Paxos, [165] which take advantage of “spontaneous mes-

sage ordering” to implement low-latency consensus. Informally, spontaneous message

order is the property that messages sent to a set of destinations will reach these desti-

nations in the same order with high probability. This can be achieved with a careful

network configuration [165] or in local-area networks when communication is imple-

mented with IP-multicast. [163]

By moving part of the functionality of Paxos and its variations to switches, proto-

col designers can explore different optimizations. A switch could improve the chances

of spontaneous message ordering and thereby increase the likelihood that Fast Paxos

can reach consensus within few communication steps. (i.e. low latency) Moreover, if

switches can store and retrieve values, one could envision an implementation of Disk

Paxos [69] that relies on stateful switches, instead of storage devices. This would re-

quire a redesign of Disk Paxos since the storage space one can expect from a switch is

much smaller than traditional storage.

3.6 Summary

FPGAs offer performance that far exceeds software running on general purpose CPUs,

while offering a degree of flexibility that would be difficult to achieve on other tar-

gets, such as ASICs. However, they are also notoriously difficult to program. P4FPGA

lowers the barrier to entry for using this powerful hardware, giving programmers a pro-

grammable substrate for create innovative new protocols and applications.

80

The advent of flexible hardware and expressive dataplane programming languages

will have a profound impact on networks. One possible use of this emerging technology

is to move logic traditionally associated with the application layer into the network itself.

In the case of Paxos, and similar consensus protocols, this change could dramatically

improve the performance of data center infrastructures.

P4FPGA provides a P4-to-FPGA compiler and runtime that is flexible, portable, and

efficient. It supports multiple architectures, generates code that runs on Xilinx or Altera

FPGAs and runs at line-rate with latencies comparable to commercial ASICs. P4FPGA

is open source and publicly available for use. Indeed, it has already been used by two

research projects to evaluate P4 programs on hardware. We hope that this tool will help

other users in real environments or to support systems research.

81

1 header_type paxos_metadata_t {
2 fields {
3 rnd : 8;
4 }
5 }
6
7 metadata paxos_metadata_t meta_paxos;
8
9 register swid {

10 width : 64;
11 inst_count : 1;
12 }
13
14 register rnds {
15 width : 8;
16 inst_count : NUM_INST;
17 }
18
19 register vrnds {
20 width : 8;
21 inst_count : NUM_INST;
22 }
23
24 register values {
25 width : VALUE_SIZE;
26 inst_count : NUM_INST;
27 }
28
29 action read_rnd() {
30 register_read(meta_paxos.rnd, rnds, paxos.inst);
31 }
32
33 action handle_1a() {
34 modify_field(paxos.msgtype, PAXOS_1B);
35 register_read(paxos.vrnd, vrnds, paxos.inst);
36 register_read(paxos.value, values, paxos.inst);
37 register_read(paxos.swid, switch_id, 0);
38 register_write(rnds, paxos.inst, paxos.rnd);
39 }

82

40
41 action handle_2a() {
42 modify_field(paxos.msgtype, PAXOS_2B);
43 register_read(paxos.swid, switch_id, 0);
44 register_write(rnds, paxos.inst, paxos.rnd);
45 register_write(vrnds, paxos.inst, paxos.rnd);
46 register_write(values, paxos.inst, paxos.value);
47 }
48
49 table tbl_rnd { actions { read_rnd; } }
50
51 table tbl_acceptor {
52 reads { paxos.msgtype : exact; }
53 actions { handle_1a; handle_2a; _drop; }
54 }
55
56 control ingress {
57 /* process other headers */
58 if (valid(paxos)) {
59 apply(tbl_rnd);
60 if (paxos.rnd > meta_paxos.rnd) {
61 apply(tbl_acceptor);
62 } else apply(tbl_drop);
63 }
64 }

Figure 3.15: Acceptor code.

83

CHAPTER 4

TOWARDS A PROGRAMMABLE NETWORK DATAPLANE: SONIC AND

PROGRAMMABLE PHYS

This work appears in Precise Realtime Software Access and Control of Wired Net-

works in NSDI 2013, with co-authors Ki Suh Lee and Hakim Weatherspoon.

Precise timestamping and pacing can offer untapped potential to network applica-

tions. For instance, precise timestamping and pacing can accurately estimate available

bandwidth [122,124,188], characterize network traffic [86,115,199], and create, detect

and prevent covert timing channels [46,126,127]. In this chapter, we demonstrate that a

programmable PHY can improve the precision of timestamping and pacing significantly

and, as a result, the performance of network applications. A programmable PHY allows

users to control and access every single bit between any two Ethernet frames. Consid-

ering each bit in 10 GbE is about 100 picosecond wide, controlling the number of bits

between Ethernet frames in the PHY means users can precisely pace packets with sub-

nanosecond precision. Similarly, counting the number of bits between Ethernet frames

means users can precisely timestamp packets with sub-nanosecond precision.

The physical layer is usually implemented in hardware and not easily accessible

to users. As a result, it is often treated as a black box. Further, commodity network

interface cards (NICs) do not provide nor allow an interface for users to access the

PHY. Consequently, operating systems cannot access the PHY either. Software access

to the PHY is only enabled via special tools such as BiFocals [67] which uses physics

equipment, including a laser and an oscilloscope.

As a new approach for accessing the PHY from software, we present SoNIC.

SoNIC provides users with unprecedented flexible realtime access to the PHY from

84

software. In essence, all of the functionality in the PHY that manipulate bits are im-

plemented in software. SoNIC consists of commodity off-the-shelf multi-core proces-

sors and a field-programmable gate array (FPGA) development board with peripheral

component interconnect express (PCIe) Gen 2.0 bus. High-bandwidth PCIe interfaces

and powerful FPGAs can support full bidirectional data transfer for two 10 GbE ports.

Further, we created and implemented optimized techniques to achieve not only high-

performance packet processing, but also high-performance 10 GbE bitstream control

in software. Parallelism and optimizations allow SoNIC to process multiple 10 GbE

bitstreams at line-speed.

With software access to the PHY, SoNIC provides the opportunity to improve upon

and develop new network research applications which were not previously feasible.

First, as a powerful network measurement tool, SoNIC can generate packets at full

data rate with minimal interpacket delay. It also provides fine-grain control over the

interpacket delay; it can inject packets with no variance in the interpacket delay. Sec-

ond, SoNIC accurately captures packets at any data rate including the maximum, while

simultaneously timestamping each packet with sub-nanosecond granularity. In other

words, SoNIC can capture exactly what was sent. Further, this precise timestamping can

improve the accuracy of research based on interpacket delay. For example, SoNIC can

be used to profile network components. It can also create timing channels that are unde-

tectable from software application and accurately estimate available bandwidth between

two end hosts.

This chapter makes the following contributions. First, we present the design and

implementation of SoNIC , a new approach for accessing the entire network stack in

software in realtime. Second, we designed SoNIC with commodity components such as

multi-core processors and a PCIe pluggable board, and present a prototype of SoNIC .

85

Third, we demonstrate that SoNIC can enable flexible, precise, and realtime network

research applications. SoNIC increases the flexibility of packet generation and the ac-

curacy of packet capture. Last, we also demonstrate that network research studies based

on interpacket delay such as available bandwidth estimation and clock synchronization

can be significantly improved with SoNIC .

4.1 Design

The design goals of SoNIC are to provide 1) access to the PHY in software, 2) realtime

capability, 3) scalability and efficiency, 4) precision, and 5) user interface. As a result,

SoNIC must allow users realtime access to the PHY in software, provide an interface

to applications, process incoming packets at line-speed, and be scalable. Our ultimate

goal is to achieve the same flexibility and control of the entire network stack for a wired

network, as a software-defined radio [189] did for a wireless network, while maintaining

the same level of precision as BiFocals [67]. Access to the PHY can then enhance the

accuracy of network research based on interpacket delay. In this section, we discuss the

design of SoNIC and how it addresses the challenges.

4.1.1 Access to the PHY in software

An application must be able to access the PHY in software using SoNIC . Thus, our so-

lution must implement the bit generation and manipulation functionality of the PHY in

software. The transmission and reception of bits can be handled by hardware. We care-

fully examined the PHY to determine an optimal partitioning of functionality between

hardware and software.

86

The PMD and PMA sublayers of the PHY do not modify any bits or change the

clock rate. They simply forward the symbol stream/bitstream to other layers. Similarly,

PCS1 only converts the bit width (gearbox), or identifies the beginning of a new 64/66

bit block (blocksync). Therefore, the PMD, PMA, and PCS1 are all implemented in

hardware as a forwarding module between the physical medium and SoNIC ’s software

component (See Figure B.1). Conversely, PCS2 (scramble/descramble) and PCS3 (en-

code/decode) actually manipulate bits in the bitstream and so they are implemented in

SoNIC ’s software component. SoNIC provides full access to the PHY in software; as

a result, all of the functionality in the PHY that manipulate bits (PCS2 and PCS3) are

implemented in software.

For this partitioning between hardware and software, we chose an Altera Stratix IV

FPGA [3] development board from HiTechGlobal [11] as our hardware platform. The

board includes a PCIe Gen 2 interface (=32 Gbps) to the host PC, and is equipped with

two SFP+ (Small Form-factor Pluggable) ports (Figure 2.6a). The FPGA is equipped

with 11.3 Gbps transceivers which can perform the 10 GbE PMA at line-speed. Once

symbols are delivered to a transceiver on the FPGA they are converted to bits (PMA),

and then transmitted to the host via PCIe by direct memory access (DMA).

4.1.2 Realtime Capability

Toachieve realtime, it is important to reduce any synchronization overheads between

hardware and software, and between multiple pipelined cores. In SoNIC , the hardware

does not generate interrupts when receiving or transmitting. Instead, the software de-

cides when to initiate a DMA transaction by polling a value from a shared data memory

structure where only the hardware writes. This approach is called pointer polling and

87

TX MAC

TX PCS RX PCS

TX HW RX HW

Socket

(a) Packet Generator

APP RX MAC

TX PCS RX PCS

TX HW RX HW

Socket

(b) Packet Capturer

Figure 4.1: Example usages of SoNIC .

is better than interrupts because there is always data to transfer due to the nature of

continuous bitstreams in 10 GbE.

In order to synchronize multiple pipelined cores, a chasing-pointer FIFO from

Sora [189] is used which supports low-latency pipelining. The FIFO removes the need

for a shared synchronization variable and instead uses a flag to indicate whether a FIFO

entry is available to reduce the synchronization overheads. In our implementation, we

improved the FIFO by avoiding memory operations as well. Memory allocation and

page faults are expensive and must be avoided to meet the realtime capability. There-

fore, each FIFO entry in SoNIC is pre-allocated during initialization. In addition, the

number of entries in a FIFO is kept small so that the amount of memory required for a

port can fit into the shared L3 cache.

We use the Intel Westmere processor to achieve high performance. Intel Westmere

is a Non-Uniform Memory Access (NUMA) architecture that is efficient for imple-

menting packet processing applications [63, 79, 135, 174]. It is further enhanced by

a instruction PCLMULQDQ. PCLMULQDQinstruction performs carry-less multiplication

and we use it to implement a fast CRC algorithm [72] that the MAC requires. Using

PCLMULQDQinstruction makes it possible to implement a CRC engine that can process

10 GbE bits at line-speed on a single core.

88

4.1.3 Scalability and Efficiency

The FPGA board we use is equipped with two physical 10 GbE ports and a PCIe inter-

face that can support up to 32 Gbps. Our design goal is to support two physical ports

per board. Consequently, the number of CPU cores and the amount of memory required

for one port must be bounded. Further, considering the intense computation required

for the PCS and MAC, and that processors come with four to six or even eight cores per

socket, our goal is to limit the number of CPU cores required per port to the number

of cores available in a socket. As a result, for one port we implement four dedicated

kernel threads each running on different CPU cores. We use a PCS thread and a MAC

thread on both the transmit and receive paths. We call our threads: TX PCS, RX PCS,

TX MAC and RX MAC. Interrupt requests (IRQ) are re-routed to unused cores so that

SoNIC threads do not give up the CPU and can meet the realtime requirements.

Additionally, we use memory very efficiently: DMA buffers are preallocated and

reused and data structures are kept small to fit in the shared L3 cache. Further, by

utilizing memory efficiently, dedicating threads to cores, and using multi-processor QPI

support, we can linearly increase the number of ports with the number of processors.

QPI provides enough bandwidth to transfer data between sockets at a very fast data rate

(> 100 Gbps).

A significant design issue still abounds: communication and CPU core utilization.

The way we pipeline CPUs, i.e. sharing FIFOs depends on the application. In particu-

lar, we pipeline CPUs differently depending on the application to reduce the number of

active CPUs; unnecessary CPUs are returned to OS. Further, we can enhance commu-

nication with a general rule of thumb: Taking advantage of the NUMA architecture and

L3 cache and placing closely related threads on the same CPU socket.

89

Figure 4.1 illustrates examples of how to share FIFOs among CPUs. An arrow is a

shared FIFO. For example, a packet generator only requires TX elements (Figure 4.1a);

RX PCS simply receives and discards bitstreams, which is required to keep a link active.

On the contrary, a packet capturer requires RX elements (Figure 4.1b) to receive and

capture packets. TX PCS is required to establish and maintain a link to the other end by

sending /I/s. To create a network profiling application, both the packet generator and

packet capturer can run on different sockets simultaneously.

4.1.4 Precision

As discussed in Section 4.1.1, the PCS2 and PCS3 are implemented in software. Con-

sequently, the software receives the entire raw bitstream from the hardware. While

performing PCS2 and PCS3 functionalities, a PCS thread records the number of bits

in between and within each Ethernet frame. This information can later be retrieved by

a user application. Moreover, SoNIC allows users to precisely control the number of

bits in between frames when transmitting packets, and can even change the value of any

bits. For example, we use this capability to give users fine-grain control over packet

generators and can even create virtually undetectable covert channels.

4.1.5 User Interface

SoNIC exposes fine-grained control over the path that a bitstream travels in software.

SoNIC uses the ioctlsystem call for control, and the character device interface to

transfer information when a user application needs to retrieve data. Moreover, users can

assign which CPU cores or socket each thread runs on to optimize the path.

90

1 #include "sonic.h"
2
3 struct sonic_pkt_gen_info info = {
4 .pkt_num = 1000000000UL,
5 .pkt_len = 1518,
6 .mac_src = "00:11:22:33:44:55",
7 .mac_dst = "aa:bb:cc:dd:ee:ff",
8 .ip_src = "192.168.0.1",
9 .ip_dst = "192.168.0.2",

10 .port_src = 5000,
11 .port_dst = 5000,
12 .idle = 12, };
13
14 fd1 = open(SONIC_CONTROL_PATH, O_RDWR);
15 fd2 = open(SONIC_PORT1_PATH, O_RDONLY);
16
17 ioctl(fd1, SONIC_IOC_RESET)
18 ioctl(fd1, SONIC_IOC_SET_MODE, SONIC_PKT_GEN_CAP)
19 ioctl(fd1, SONIC_IOC_PORT0_INFO_SET, &info)
20 ioctl(fd1, SONIC_IOC_RUN, 10)
21
22 while ((ret = read(fd2, buf, 65536)) > 0) {
23 // process data
24 }
25
26 close(fd1);
27 close(fd2);

Figure 4.2: Packet Generator and Capturer.

To allow further flexibility, SoNIC allows additional application-specific threads,

called APP threads, to be pipelined with other threads. A character device is used to

communicate with these APP threads from userspace. For instance, users can implement

a logging thread pipelined with receive path threads (RX PCS and/or RX MAC). Then

the APP thread can deliver packet information along with precise timing information

to userspace via a character device interface. There are two constraints that an APP

thread must always meet: Performance and pipelining. First, whatever functionality is

implemented in an APP thread, it must be able to perform it faster than 10.3125 Gbps

91

Hardware

Kernel

Userspace

PMD

PCS1

PMA

MAC

PCS2,3

DMA & PCIe Engine

10G Transceiver 10G Transceiver

TX Ring RX Ring

Gearbox Blocksync

Control

SFP+

Application

APP

TX MAC

TX PCS

RX MAC

RX PCS

Control

Figure 4.3: SoNIC architecture.

for any given packet stream in order to meet the realtime capability. Second, an APP

thread must be properly pipelined with other threads, i.e. input/output FIFO must be

properly set. Currently, SoNIC supports one APP thread per port.

Figure 4.2 illustrates the source code of an example use of SoNIC as a packet genera-

tor and capturer. After SONIC IOC SET MODE is called (line 18), threads are pipelined

as illustrated in Figure 4.1a and 4.1b. After SONIC IOC RUN command (line 20), port

0 starts generating packets given the information from info (line 3-12) for 10 seconds

(line 20) while port 1 starts capturing packets with very precise timing information.

Captured information is retrieved with read system calls (line 22-23) via a character

device. As a packet generator, users can set the desired number of /I/sbetween pack-

ets (line 12). For example, twelve /I/characters will achieve the maximum data rate.

Increasing the number of /I/characters will decrease the data rate.

92

4.1.6 Discussion

We have implemented SoNIC to achieve the design goals described above, namely, soft-

ware access to the PHY, realtime capability, scalability, high precision, and an interactive

user interface. Figure 4.3 shows the major components of our implementation. From top

to bottom, user applications, software as a loadable Linux kernel module, hardware as a

firmware in FPGA, and a SFP+ optical transceiver. Although Figure 4.3 only illustrates

one physical port, there are two physical ports available in SoNIC . SoNIC software

consists of about 6k lines of kernel module code, and SoNIC hardware consists of 6k

lines of Verilog code excluding auto-generated source code by Altera Quartus [2] with

which we developed SoNIC ’s hardware modules.

The idea of accessing the PHY in software can be applied to other physical layers

with different speeds. The 1 GbE and 40 GbE PHYs are similar to the 10 GbE PHY

in that they run in full duplex mode, and maintain continuous bitstreams. Especially,

the 40GbE PCS employees four PCS lanes that implements 64B/66B encoding as in

the 10GbE PHY. Therefore, it is possible to access the PHYs of them with appropriate

clock cycles and hardware supports. However, it might not be possible to implement

four times faster scrambler with current CPUs.

4.2 Implementation

Performance is paramount for SoNIC to achieve its goals and allow software access to

the entire network stack. In this section we discuss the software (Section 4.2.1) and

hardware (Section 4.2.2) optimizations that we employ to enable SoNIC. Further, we

evaluate each optimization (Sections 4.2.1 and 4.2.2) and demonstrate that they help to

93

enable SoNIC and network research applications (Section 4.3) with high performance.

4.2.1 Software Optimizations

MAC Thread Optimizations As stated in Section 4.1.2, we use PCLMULQDQinstruction

which performs carry-less multiplication of two 64-bit quadwords [75] to implement the

fast CRC algorithm [72]. The algorithm folds a large chunk of data into a smaller chunk

using the PCLMULQDQinstruction to efficiently reduce the size of data. We adapted

this algorithm and implemented it using inline assembly with optimizations for small

packets.

PCS Thread Optimizations Considering there are 156 million 66-bit blocks a second,

the PCS must process each block in less than 6.4 nanoseconds. Our optimized (de-

)scrambler can process each block in 3.06 nanoseconds which even gives enough time

to implement decode/encode and DMA transactions within a single thread.

In particular, the PCS thread needs to implement the (de-)scrambler function,

G(x) = 1 + x39 + x58, to ensure that a mix of 1’s and 0’s are always sent (DC bal-

ance). The (de-)scrambler function can be implemented with Algorithm 1, which is

very computationally expensive [67] taking 320 shift and 128 xor operations (5 shift

operations and 2 xors per iteration times 64 iterations). In fact, our original implemen-

tation of Algorithm 1 performed at 436 Mbps, which was not sufficient and became the

bottleneck for the PCS thread. We optimized and reduced the scrambler algorithm to a

total of 4 shift and 4 xor operations (Algorithm 2) by carefully examining how hardware

implements the scrambler function [198]. Both Algorithm 1 and 2 are equivalent, but

Algorithm 2 runs 50 times faster (around 21 Gbps).

94

Algorithm 1 Scrambler
s← state
d ← data
for i = 0→ 63 do

in← (d >> i) & 1
out ← (in ⊕ (s >> 38) ⊕ (s >> 57)) & 1
s← (s << 1) | out
r ← r | (out << i)
state← s

end for

Algorithm 2 Parallel Scrambler
s← state
d ← data
r ← (s >> 6) ⊕ (s >> 25) ⊕ d
r ← r ⊕ (r << 39) ⊕ (r << 58)
state← r

Memory Optimizations We use packing to further improve performance. Instead of

maintaining an array of data structures that each contains metadata and a pointer to

the packet payload, we pack as much data as possible into a preallocated memory

space: Each packet structure contains metadata, packet payload, and an offset to the

next packet structure in the buffer. This packing helps to reduce the number of page

faults, and allows SoNIC to process small packets faster. Further, to reap the benefits of

the PCLMULQDQinstruction, the first byte of each packet is always 16-byte aligned.

Evaluation We evaluated the performance of the TX MAC thread when computing

CRC values to assess the performance of the fast CRC algorithm and packing packets

we implemented relative to batching an array of packets. For comparison, we computed

the theoretical maximum throughput (Reference throughput) in packets per second (pps)

for any given packet length (i.e. the pps necessary to achieve the maximum throughput

of 10 Gbps less any protocol overhead).

If only one packet is packed in the buffer, packing will perform the same as batching

95

10M

15M

20M

25M

30M

64 65 66 67 68 69 70 71

T
h

ro
u

g
h

p
u

t
(p

p
s)

Ethernet frame size (in bytes)

Reference
batching

2
4

8
16
32

Figure 4.4: Throughput of packing

0M

5M

10M

15M

20M

25M

 0 200 400 600 800 1000 1200 1400 1600

T
h

ro
u
g

h
p

u
t

(p
p
s)

Ethernet frame size (in bytes)

Reference
bitwise

table
fast crc

Figure 4.5: Throughput of different CRC algorithms.

since the two are essentially the same in this case. We doubled the factor of packing

from 1 to 32 and assessed the performance of packing each time, i.e. we doubled the

number of packets written to a single buffer. Figure 4.4 shows that packing by a factor

of 2 or more always outperforms the Reference throughput and is able to achieve the

max throughput for small packets while batching does not.

Next, we compared our fast CRC algorithm against two CRC algorithms that the

Linux Kernel provides. One of the Linux CRC algorithms is a naive bit computation

and the other is a table lookup algorithm. Figure 4.5 illustrates the results of our com-

parisons. The x-axis is the length of packets tested while the y-axis is the throughput.

The Reference line represents the maximum possible throughput given the 10 GbE stan-

dard. Packet lengths range the spectrum of sizes allowed by 10 GbE standard from 64

96

bytes to 1518 bytes. For this evaluations, we allocated 16 pages packed with packets

of the same length and computed CRC values with different algorithms for 1 second.

As we can see from Figure 4.5, the throughput of the table lookup closely follows the

Reference line; however, for several packet lengths, it underperforms the Reference line

and is unable to achieve the maximum throughput. The fast CRC algorithm, on the other

hand, outperforms the Reference line and target throughput for all packet sizes.

Lastly, we evaluated the performance of pipelining and using multiple threads on the

TX and RX paths. We tested a full path of SoNIC to assess the performance as packets

travel from the TX MAC to the TX PCS for transmission and up the reverse path for

receiving from the RX PCS to the RX MAC and to the APP (as a logging thread). All

threads perform better than the Reference target throughput. The overhead of FIFO

is negligible when we compare the throughput of individual threads to the throughput

when all threads are pipelined together. Moreover, when using two ports simultaneously

(two full instances of receive and transmit SoNIC paths), the throughput for both ports

achieve the Reference target maximum throughput.

4.2.2 Hardware Optimizations

DMA Controller Optimizations Given our desire to transfer large amounts of data

(more than 20 Gbps) over the PCIe, we implemented a high performance DMA con-

troller. There are two key factors that influenced our design of the DMA controller.

First, because the incoming bitstream is a continuous 10.3125 Gbps, there must be

enough buffering inside the FPGA to compensate for a transfer latency. Our imple-

mentation allocates four rings in the FPGA for two ports (Figure 4.3 shows two of the

rings for one port). The maximum size of each ring is 256 KB, with the size being

97

limited by the amount of SRAM available on hardware.

The second key factor we needed to consider was the efficient utilization of bus

bandwidth. The DMA controller operates at a data width of 128 bits. If we send a 66-bit

data block over the 128-bit bus every clock cycle, we will waste 49% of the bandwidth,

which was not acceptable. To achieve more efficient use of the bus, we create a data

structure and separated the syncheader from the packet payload before storing a 66-bit

block in the data structure. Sixteen two-bit syncheaders are concatenated together to

create a 32-bit integer and stored in the syncheaders field of the data structure. The

64-bit packet payloads associated with these syncheaders are stored in the payloads

field of the data structure. For example, the ith 66-bit PCS block from a DMA page

consists of the two-bit sync header from syncheaders[i/16] and the 64-bit payload

from payloads[i]. With this data structure there is a 32-bit overhead for every page,

however it does not impact the overall performance.

PCI Express Engine Optimizations When SoNIC was first designed, it only supported

a single port. As we scaled SoNIC to support multiple ports simultaneously, the need

for multiplexing traffic among ports over the single PCIe link became a significant issue.

To solve this issue, we employ a two-level arbitration scheme to provide fair arbitration

among ports. A lower level arbiter is a fixed-priority arbiter that works within a single

port and arbitrates between four basic Transaction Level Packet (TLP) types: Memory,

I/O, configuration, and message. The TLPs are assigned with fixed priority in favor of

the write transaction towards the host. The second level arbiter implements a virtual

channel, where the Traffic Class (TC) field of TLP’s are used as de-multiplexing keys.

We implemented our own virtual channel mechanism in SoNIC instead of using the one

available in the PCIe stack since virtual channel support is an optional feature for ven-

dors to comply with. In fact, most chipsets on the market at the time of this dissertation

98

Configuration Same Socket? # pages
Throughput (RX)

pages
Throughput (TX)

Realtime?
Port 0 Port 1 Port 0 Port 1

Single RX 16 25.7851

Dual RX
Yes 16 13.9339 13.899

No 8 14.2215 13.134

Single TX 16 23.7437

Dual TX
Yes 16 14.0082 14.048

No 16 13.8211 13.8389

Single RX/TX 16 21.0448 16 22.8166

Dual RX/TX

Yes

4 10.7486 10.8011 8 10.6344 10.7171 No

4 11.2392 11.2381 16 12.384 12.408 Yes

8 13.9144 13.9483 8 9.1895 9.1439 Yes

8 14.1109 14.1107 16 10.6715 10.6731 Yes

No

4 10.5976 10.183 8 10.3703 10.1866 No

4 10.9155 10.231 16 12.1131 11.7583 Yes

8 13.4345 13.1123 8 8.3939 8.8432 Yes

8 13.4781 13.3387 16 9.6137 10.952 Yes

Table 4.1: DMA throughput. The numbers are average over eight runs. The delta in
measurements was within 1% or less.

do not support the virtual channel mechanism. By implementing the virtual channel

support in SoNIC , we achieve better portability since we do not rely on chip vendors

that enable PCI arbitration.

Evaluation

We examined the maximum throughput for DMA between SoNIC hardware and

SoNIC software to evaluate our hardware optimizations. It is important that the bidirec-

tional data rate of each port of SoNIC is greater than 10.3125 Gbps. For this evaluation,

we created a DMA descriptor table with one entry, and changed the size of memory for

each DMA transaction from one page (4K) to sixteen pages (64KB), doubling the num-

ber of pages each time. We evaluated the throughput of a single RX or TX transaction,

dual RX or TX transactions, and full bidirectional RX and TX transactions with both

one and two ports (see the rows of Table 4.1). We also measured the throughput when

traffic was sent to one or two CPU sockets.

99

Table 4.1 shows the DMA throughput of the transactions described above. We first

measured the DMA without using pointer polling (see Section 4.1.2) to obtain the maxi-

mum throughput of the DMA module. For single RX and TX transactions, the maximum

throughput is close to 25 Gbps. This is less than the theoretical maximum throughput of

29.6 Gbps for the x8 PCIe interface, but closely matches the reported maximum through-

put of 27.5 Gbps [1] from Altera design. Dual RX or TX transactions also resulted in

throughput similar to the reference throughput of Altera design.

Next, we measured the full bidirectional DMA transactions for both ports varying

the number of pages again. As shown in the bottom half of Table 4.1, we have multiple

configurations that support throughput greater than 10.3125 Gbps for full bidirections.

However, there are a few configurations in which the TX throughput is less than 10.3125

Gbps. That is because the TX direction requires a small fraction of RX bandwidth to

fetch the DMA descriptor. If RX runs at maximum throughput, there is little room for

the TX descriptor request to get through. However, as the last column on the right

indicates these configurations are still able to support the realtime capability, i.e. con-

sistently running at 10.3125 Gbps, when pointer polling is enabled. This is because

the RX direction only needs to run at 10.3125 Gbps, less than the theoretical maximum

throughput (14.8 Gbps), and thus gives more room to TX. On the other hand, two con-

figurations where both RX and TX run faster than 10.3125 Gbps for full bidirections are

not able to support the realtime capability. For the rest of the chapter, we use 8 pages

for RX DMA and 16 pages for TX DMA.

100

4.3 Evaluation

How can SoNIC enable flexible, precise and novel network research applications?

Specifically, what unique value does software access to the PHY buy? SoNIC can

literally count the number of bits between and within packets, which can be used for

timestamping at the sub-nanosecond granularity (again each bit is 97 ps wide, or about

∼0.1 ns). At the same time, access to the PHY allows users control over the number of

idles (/I/s) between packets when generating packets. This fine-grain control over

the /I/smeans we can precisely control the data rate and the distribution of interpacket

gaps. For example, the data rate of a 64B packet stream with uniform 168 /I/sis 3

Gbps. When this precise packet generation is combined with exact packet capture, also

enabled by SoNIC , we can improve the accuracy of any research based on interpacket

delays [46, 86, 115, 122, 124, 126, 127, 199, 207].

In this section, we demonstrate SoNIC’s accurate packet generation capability in

Section 4.3.1 and packet capture capability in Section 4.3.2, which are unique con-

tributions and can enable unique network research in and of themselves given both the

flexibility, control, and precision. Further, we demonstrate that SoNIC can precisely and

flexibly characterize and profile commodity network components like routers, switches,

and NICs. Section 4.3.3 discusses the profiling capability enabled by SoNIC .

4.3.1 Packet Generator

Packet generation is important for network research. It can stress test end-hosts, switch-

es/routers, or a network itself. Moreover, packet generation can be used for replaying a

trace, studying distributed denial of service (DDoS) attacks, or probing firewalls.

101

0M

5M

10M

15M

20M

 0 200 400 600 800 1000 1200 1400 1600

T
h

ro
u

g
h

p
u

t
(p

p
s)

Ethernet frame size

Reference
TX MAC
RX MAC

Figure 4.6: Throughput of packet generator and capturer.

In order to claim that a packet generator is accurate, packets need to be crafted

with fine-grained precision (minimum deviations in IPD) at the maximum data rate.

However, this fine-grained control is not usually exposed to users. Further, commodity

servers equipped with a commodity NIC often does not handle small packets efficiently

and require batching [63,79,135,174]. Thus, the sending capability of servers/software-

routers are determined by the network interface devices. Myricom Sniffer 10G [18]

provides line-rate packet injection capability, but does not provide fine-grained control

of IPGs. Hardware based packet generators such as ALT10G can precisely control IPGs,

but do not provide any interface for users to flexibly control them.

We evaluated SoNIC as a packet generator (Figure 2.8a and 4.1a). Figure 4.7 com-

pares the performance of SoNIC to that of Sniffer 10G. Note, we do not include ALT10G

in this evaluation since we could not control the IPG to generate packets at 9 Gbps. We

used two servers with Sniffer 10G enabled devices to generate 1518B packets at 9 Gbps

between them. We split the stream so that SoNIC can capture the packet stream in

the middle (we describe this capture capability in the following section). As the graph

shows, Sniffer 10G allows users to generate packets at desired data rate, however, it

does not give the control over the IPD; that is, 85.65% packets were sent in a burst (in-

stantaneous 9.8 Gbps and minimum IPG (14 /I/s)). SoNIC , on the other hand, can

generate packets with uniform distribution. In particular, SoNIC generated packets with

102

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
C

D
F

Interpacket Delay (ns)

SoNIC
Sniffer 10G

Figure 4.7: Comparison of packet generation at 9 Gbps.

no variance for the IPD (i.e. a single point on the CDF, represented as a triangle). More-

over, the maximum throughput perfectly matches the Reference throughput (Figure 4.6)

while the TX PCS consistently runs at 10.3125 Gbps (which is not shown). In addition,

we observed no packet loss, bit errors, or CRC errors during our experiments.

SoNIC packet generator can easily achieve the maximum data rate, and allows users

to precisely control the number of /I/sto set the data rate of a packet stream. Moreover,

with SoNIC , it is possible to inject less /I/sthan the standard. For example, we can

achieve 9 Gbps with 64B packets by inserting only eight /I/sbetween packets. This

capability is not possible with any other (software) platform. In addition, if the APP

thread is carefully designed, users can flexibly inject a random number of /I/sbetween

packets, or the number of /I/sfrom captured data. SoNIC packet generator is thus by

far the most flexible and highest performing.

4.3.2 Packet Capturer

A packet capturer (a.k.a. packet sniffer, or packet analyzer) plays an important role in

network research; it is the opposite side of the same coin as a packet generator. It can

record and log traffic over a network which can later be analyzed to improve the perfor-

103

mance and security of networks. In addition, capturing packets with precise timestamp-

ing is important for High Frequency Trading [99, 176] or latency sensitive applications.

Similar to the sending capability, the receiving capability of servers and software

routers is inherently limited by the network adapters they use; it has been shown that

some NICs are not able to receive packets at line speed for certain packet sizes [174].

Furthermore, if batching is used, timestamping is significantly perturbed if done in ker-

nel or userspace [67]. High-performance devices such as Myricom Sniffer10G [18, 92]

provide the ability of sustained capture of 10 GbE by bypassing kernel network stack.

It also provides timestamping at 500 ns resolution for captured packets. SoNIC , on the

other hand, can receive packets of any length at line-speed with precise timestamping.

Putting it all together, when we use SoNIC as a packet capturer (Figure 2.8a

and 4.1b), we are able to receive at the full Reference data rate (Figure 4.6). For the

APP thread, we implemented a simple logging application which captures the first 48

bytes of each packet along with the number of /I/sand bits between packets. Because

of the relatively slow speed of disk writes, we store the captured information in mem-

ory. This requires about 900MB to capture a stream of 64 byte packets for 1 second, and

50 MB for 1518 byte packets. We use ALT10G to generate packets for 1 second and

compare the number of packets received by SoNIC to the number of packets generated.

SoNIC has perfect packet capture capabilities with flexible control in software. In

particular, Figure 4.8 shows that given a 9 Gbps generated traffic with uniform IPD

(average IPD=1357.224ns, stdev=0), SoNIC captures what was sent; this is shown as a

single triangle at (1357.224, 1). All the other packet capture methods within userspace,

kernel or a mixture of hardware timestamping in userspace (Sniffer 10G) failed to accu-

rately capture what was sent. We receive similar results at lower bandwidths as well.

104

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
C

D
F

Interpacket Delay (ns)

SoNIC
kernel

userspace
Sniffer 10G

Figure 4.8: Comparison of timestamping.

4.3.3 Profiler

Interpacket delays are a common metric for network research. It can be used to estimate

available bandwidth [122, 124], increase TCP throughput [207], characterize network

traffic [86,115,199], and detect and prevent covert timing channels [46,126,127]. There

are a lot of metrics based on IPD for these areas. We argue that SoNIC can increase the

accuracy of those applications because of its precise control and capture of IPDs. In

particular, when the SoNIC packet generator and capturer are combined, i.e. one port

transmits packets while the other port captures, SoNIC can be a flexible platform for

various studies. As an example, we demonstrate how SoNIC can be used to profile

network switches.

Switches can be generally divided into two categories: store-and-forward and cut-

through switches. Store-and-forward switches decode incoming packets, buffers them

before making a routing decision. On the other hand, cut-through switches route incom-

ing packets before entire packets are decoded to reduce the routing latency. We gen-

erated 1518B packets with uniform 1357.19 ns IPD (=9 Gbps) to a Cisco 4948 (store-

and-forward) switch and a IBM BNT G8264 (cut-through) switch. These switches show

different characteristics as shown in Figure 4.9. The x-axis is the interpacket delay; the

y-axis is the cumulative distribution function. The long dashed vertical line on the left

105

 0

 0.2

 0.4

 0.6

 0.8

 1

 1200 1300 1400 1500 1600 1700 1800 1900 2000
C

D
F

Interpaket Delay (ns)

Cisco 4948
IBM G8264

Figure 4.9: IPDs of Cisco 4948 and IBM G8264. 1518B packets at 9 Gbps.

is the original IPD injected to the packet stream.

There are several takeaways from this experiment. First, the IPD for generated pack-

ets had no variance; none. The generated IPD produced by SoNIC was always the same.

Second, the cut-through switch introduces IPD variance (stdev=31.6413), but less than

the IPD on the store-and-forward switch (stdev=161.669). Finally, the average IPD was

the same for both switches since the data rate was the same: 1356.82 (cut-through)

and 1356.83 (store-and-forward). This style of experiment can be used to profile and

fingerprint network components as different models show different packet distributions.

4.4 Application: Measuring Available Bandwidth

This work appears in Timing is everything: Accurate, Minimum-cost, Available Band-

width Estimation in High-speed Wired Network in IMC 2014, with co-authors Ki Suh

Lee, Erluo Li, ChiunLin Lim, Hakim Weatherspoon, Ao Tang.

In this section, we present an application built on SoNIC to measure end-to-end

available bandwidth of a network path. The concept of available bandwidth estima-

tion stems from a simple observation: Send a train of probe packets through a net-

106

work path to momentarily congest the bottleneck link, then infer the available band-

width at the receiving end from probe packet timestamps [84, 138, 173, 188]. Band-

width estimation is important for designing high performant networked systems, im-

proving network protocols, building distributed systems, and improving application per-

formance [82, 182, 184].

Existing bandwidth estimation methods are intrusive, expensive, inaccurate, and

does not work well with bursty cross traffic or on 10Gbps links [76, 130]. There are

three significant problems with current approaches. First, such approaches are intru-

sive since load is being added to the network. Current measurement methods require

creating explicit probe packets that consume bandwidth and CPU cycles. Second, cur-

rent approaches often do not have enough fidelity to accurately generate or timestamp

probe packets. By operating in userspace to maximize programming flexibility, pre-

cise control and measurement of packet timings is sacrificed. As a result, the probe

packet timings are often perturbed by operating systems (OS) level activities. With-

out precise timestamps, accurate estimation becomes very challenging, especially in

high-speed networks. Finally, Internet traffic is known to be bursty at a range of time

scales [87], but previous studies have shown that existing estimation approaches perform

poorly under bursty traffic conditions [197].

MinProbe performs available bandwidth estimation in real-time with minimal-cost,

high-fidelity for high-speed networks (10 Gigabit Ethernet), while maintaining the flex-

ibility of userspace control and compatibility with existing bandwidth estimation al-

gorithms. MinProbe minimizes explicit probing costs by using application packets as

probe packets whenever possible, while generating explicit packets only when neces-

sary. MinProbe greatly increases measurement fidelity via software access to the wire

and maintains wire-time timestamping of packets before they enter the host. Finally,

107

a userspace process controls the entire available bandwidth estimation process giving

flexibility to implement new algorithms as well as reuse existing estimation algorithms.

Importantly, MinProbe operates in real-time, such that it is useful as a networked sys-

tems building block.

MinProbe was designed with commodity components and achieves results that ad-

vance the state of the art. It can be built from a commodity server and an FPGA (field

programmable gate array) PCIe (peripheral component interconnect express) pluggable

board, SoNIC [113]. As a result, any server can be turned into a MinProbe middlebox.

Indeed, we have turned several nodes and sites in the GENI (global environment for net-

working innovations) network into MinProbe middleboxes. It has been evaluated on a

testbed that consists of multiple 10 Gigabit Ethernet (10 GbE) switches and on the wide-

area Internet via the National Lambda Rail (NLR). It achieves high accuracy: Results

illustrate available bandwidth estimation with errors typically no more than 0.4 Gbps in

a 10 Gbps network. It estimates available bandwidth with minimal overhead: Available

bandwidth estimates use existing network traffic as probes. Overall, MinProbe allows

software programs and end-hosts to accurately measure the available bandwidth of high

speed, 10 gigabit per second (Gbps), network paths even with bursty cross traffic, which

is a unique contribution.

4.4.1 Background

Available bandwidth estimation is motivated by a simple problem: What is the maxi-

mum data rate that a user could send down a network path without going over capac-

ity? This data rate is equal to the available bandwidth on the tight link, which has the

minimum available bandwidth among all links on the network path. While the prob-

108

lem sounds simple, there are four main challenges to available bandwidth estimation—

timeliness, accuracy, non-intrusiveness, and consistency. In particular, an available

bandwidth estimation methodology and tool would ideally add as little overhead as pos-

sible and return timely and accurate estimation on the available bandwidth consistently

across a wide range of Internet traffic conditions.

In this section, we first discuss many of the key ideas and assumptions underlying

existing available bandwidth estimation methods and tools. Then, motivate the devel-

opment of MinProbe by illustrating the limitations faced by these current methods and

tools.

Methodology Many existing available bandwidth estimation tools take an end-to-end

approach. A typical setup sends probe packets with a predefined interval along the path

under measurement, and observe change in certain packet characteristics at the receiver

to infer the amount of cross traffic in the network. The key idea to such inferences:

When the probing rate exceeds the available bandwidth, the observed packet charac-

teristics undergo a significant change. The turning point where the change occurs is

then the estimated available bandwidth. See Figure 4.18, for example, the turning point

where queuing delay variance increases is the available bandwidth estimate. Most ex-

isting available bandwidth estimation tools can be classified according to the packet

characteristics and metrics used to observing a turning point.

Bandwidth estimation tools such as Spruce [188] and IGI [81] operate by observing

the change in the output probing rate. The idea is that when the probing rate is below the

available bandwidth, probe packets should emerge at the receiver with the same probing

rate. However, once the probing rate exceeds the available bandwidth, the gap between

packets will be stretched due to queuing and congestion, resulting in a lower output

109

MPMP
sisi+1 si+1 si

gi hi

Figure 4.10: Usage of bandwidth estimation

probing rate. On the other hand, bandwidth estimation tools such as Pathload [84],

PathChirp [173], TOPP [138], and Yaz [185] operate by observing the change in one-

way delay (OWD), i.e. the time required to send a packet from source to destination.

OWD increases when the probing rate exceeds the available bandwidth, as packets have

to spend extra time in buffers.

An alternative methodology to the end-to-end approach would be to query every

network element (switch/router) along a network path. A network administrator could

collect the statistical counters from all related ports, via protocols such as sFlow [19]; or

infer from Openflow control messages such as PacketIn and FlowRemoved mes-

sages [208]. However, obtaining an accurate, consistent, and timely reading from multi-

ple switches in an end-to-end manner can be very difficult [9]. Further, collecting coun-

ters from switches is done at per-second granularity and requires network administrative

privileges, which makes the approach less timely and useful for building distributed sys-

tems, improving network protocols, or improving application performance. As a result,

we assume and compare to other end-to-end approaches for the rest of this section.

110

Limitations While useful, the end-to-end approach for available bandwidth estima-

tion has inherent issues that limit its applicability, especially in high-capacity links. We

outline a few of these challenges.

• High-fidelity measurements require high-fidelity instruments. Generating

packet trains in userspace typically require a CPU-intensive busy-wait loop, which

is prone to operating system level noise, such as OS scheduling, interrupt coa-

lescing, and batching. As a result, generated interpacket gaps of a packet train

rarely match the interpacket gaps specified by the userspace program. Moreover,

timestamping in user or kernel space adds considerable error to the available band-

width estimation. Even timestamping in hardware adds noise when timestamping

packet (albeit, less noise than kernel space, but still enough to make available

bandwidth estimation unusable in many situations [114]). The takeaway: Without

high-fidelity capabilities, available bandwidth estimation lacks accuracy.

• Non-negligible overhead. Bandwidth estimation tools add traffic to the network

path under measurement. This may adversely affect application traffic and mea-

surement accuracy [160]. The amount of probe traffic is proportional to the rate

of sampling and the number of concurrent measurement sessions. As a result, the

effect of probe packets on cross traffic exacerbates with traffic increase.

• Traffic burstiness impacts measurement results. Bandwidth estimation results

are sensitive to traffic burstiness. However, existing tools typically ignore the

burstiness of cross traffic in favor of simple estimation algorithms. Limitations of

batching and instrumentation further mask burstiness to some degree to userspace

tools. As a result, existing tools may not be able to reflect true available bandwidth

with bursty traffic.

In this section, we introduce a new tool that can be applied to existing available

111

bandwidth estimation algorithms and tools while overcoming the limitations discussed

above. Indeed, we demonstrate that we can accurately estimate available bandwidth

in high-speed networks with minimal overhead with existing algorithms. In the next

section, we discuss the details of the design and implementation of our methodology.

4.4.2 Design

MinProbe measures the available bandwidth with high-fidelity, minimal-cost and in

userspace; thus, enabling cheaper (virtually no overhead) and more accurate available

bandwidth estimation. It achieves these goals through three main features:

First, MinProbe is a middlebox architecture that uses application network traffic

as probe traffic to eliminate the need for explicit probe packets. When an application

packet arrives at MinProbe , MinProbe decides whether the packet should be used as

a probe; if so, MinProbe modulates the timings between application packets chosen as

probe packets before forwarding them to their destination. A programmable flow table

accessible from userspace controls the selection of an application packet as a probe

packet. Thus, by using application traffic implicitly as available bandwidth probes, we

are able to remove all the traditional costs and overheads. A similar idea was proposed in

MGRP [160], which has the same goal of lower overhead, but MGRP lacks high-fidelity

measurement capability.

Second, MinProbe is a high-fidelity network measurement substrate that is capable

of modulating and capturing traffic timings with sub-nanosecond precision. The high-

precision is achieved by enabling software access to the physical layer of the network

protocol stack. When MinProbe modulates probe packets (application packets), it adds

and removes minute spacings between packets through direct access to the physical

112

layer.

Finally, MinProbe is accessible from userspace. From userspace, users can con-

trol sub-nanosecond modulations between packets to generate probes and obtain sub-

nanosecond timings between received packets to estimate available bandwidth. Further,

all probes can be generated and timing measurements can be received in real-time from

userspace.

We envision MinProbe to be deployed in an architecture where a separate control

plane manages a rich set of middlebox functionalities with event trigger support(e.g

[33]). In particular, we believe the separation of measurement hardware and production

hardware enables high-fidelity measurement in high-speed networks (and in real-time)

that is difficult to achieve otherwise.

Precise Probe Control MinProbe offers enhanced network measurement capabilities:

High-fidelity packet pacing to generate probe packets and high-fidelity packet times-

tamping to measure received packet times. We achieve high-fidelity capabilities via

direct access to the physical layer from software and in real-time. To see how Min-

Probe works, we describe how MinProbe takes advantage of the software access to the

physical layer to achieve high-fidelity network measurement.

High-Fidelity Measurement The key insight and capability of how Min-

Probe achieves high-fidelity is from its direct access to the /I/characters in the physical

layer. In particular, MinProbe can measure (count) and generate (insert or remove) an

exact number of /I/characters between each subsequent probe packet to measure the

relative time elapsed between packets or generate a desired interpacket gap. Further,

if two subsequent probe packets are separated by packets from a different flow (cross

113

traffic), the gap between probe packets will include /I/characters as well as data char-

acters of the cross traffic packets, but the measurement will still be exact (i.e. /I/and

data characters represent time with sub-nanosecond precision). This level of access

from software is unprecedented. Traditionally, however, an end host may timestamp

packets in userspace, kernel, or network interface hardware which all add significant

noise. None of these methods provide enough precision for high-fidelity network mea-

surements; consequently, many existing bandwidth estimation tools report significant

estimation error (large variation and low accuracy) [114].

In a similar fashion to measuring the space between packets, MinProbe generates

probe packets through high-fidelity pacing, by inserting an exact spacing between pack-

ets. By accessing the physical layer of 10 GbE in software in real-time, MinProbe can

insert or remove /I/characters from application traffic as needed. In particular, two

variables of the probe traffic are of interest: The gap between packets and the overall

rate of packet trains. Users can program MinProbe via command line calls or API calls

to specify the number of /I/characters (i.e. the number of 100s of pico-seconds) to be

maintained between subsequent probe packets, allowing userspace programs to perform

high-fidelity pacing.

Direct access to /I/characters from software and in real-time differentiates Min-

Probe from other measurement tools. Specifically, MinProbe is able to characterize and

generate an exact spacing (interpacket gap) between probe packets.

Explicit probes are not necessary for MinProbe . Similar to MGRP [160], Min-

Probe can use application traffic as probe packets. It has a programmable flow table

that performs flow matching on pass-through traffic. Users can insert entries into the

flow table to specify which flows are probes. Traffic that have a match in the flow ta-

ble are modulated before they are forwarded. Other flows that do not have a match are

114

10-4

10-3

10-2

10-1

100

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Pr
ob

ab
il

it
y
Di

st
ri

bu
ti
on

Interpacket Delay (ns)

(a) original traffic

10-4

10-3

10-2

10-1

100

 0 2000 4000 6000 8000 10000

Pr
ob

ab
il

it
y
Di

st
ri

bu
ti
on

Interpacket Delay (ns)

(b) modulated traffic

Figure 4.11: Comparison of traffic pattern before and after passed through middlebox

simply forwarded without any change in timing. With MinProbe , we are able to per-

form line-rate forwarding at 10 Gbps, even for the minimum size packets. Moreover,

MinProbe has the ability to generate explicit probe packets, especially when there is

insufficient application traffic. Dummy probing packets are padded with zero bytes and

transmitted at pre-defined intervals as programmed by the users.

Figure 4.11 illustrates MinProbe ’s ability to perform high-fidelity measurement and

pacing as a middlebox with only application packets as probes.

Figure 4.11a shows the distribution of incoming application traffic to a Min-

Probe middlebox. The x-axis is the distance in time between the first byte of subsequent

packets (or interpacket delay), and y-axis is the frequency of occurrences. We generated

two flows of application traffic at 1 Gbps, and a MinProbe middlebox was configured to

only modulate one of the flows. As can be seen in Figure 4.11b, after MinProbe , the

packets of the probing flow have minimal spacing (interpacket delay) between subse-

quent packets, and exhibit a much higher probe rate: The peak just to the right of 0 ns

interpacket delay was the modulated probing traffic. Even though the overall application

traffic rate was 1 Gbps, we were able to increase the instantaneous probe rate up to 10

115

Gbps for short periods of time by creating short packet trains with minimal interpacket

delay. The packets of the other flows, on the other hand, were forwarded as-is, with no

changes in timing.

How would MinProbe impact the application traffic performance? Obviously, if

any traffic were paced, then MinProbe would change the pacing. But, for general TCP

traffic, the minute modulation that MinProbe causes does not affect the rate or TCP

throughput. Similar results have been demonstrated in prior art MGRP [160]. One

problem may occur when a TCP cwnd (congestion window) is small, e.g. when cwnd =

1. In this case, the application does not create enough traffic and dummy probe needs to

be created.

N R

G

D

Probes

Figure 4.12: Generalized probe train model.

Generalized Probe Model Figure 4.12 shows a generalized probe train model we de-

veloped to emulate a number of existing bandwidth estimation algorithms and used for

the rest of the section. The horizontal dimension is time. The vertical dimension is the

corresponding (instantaneous) probe rate. Each pulse (we call it a train) contains mul-

tiple probe packets sent at a particular rate, as depicted by the height. In particular, the

parameter N represents the number of packets in each train and parameter R represents

the (instantaneous) probe rate of the train (i.e. we are able to change the interpacket

gap between N packets to match a target probe rate R). Packet sizes are considered in

computing the probe rate. For a mixed-size packet train, MinProbe is able to adjust the

space between all adjacent packets within the train to achieve the desired probe rate R.

The gaps between successive probe trains are specified with parameter G (gap). Finally,

116

Algorithm N R G D
Pathload 20 [0.1:0.1:9.6] Gbps Variable Variable

Pathchirp 1 [0.1:0.1:9.6] Gbps Exponential decrease Variable

Spruce 2 500Mbps 1.2ns 48us
IGI 60 [0.1:0.1:9.6] Gbps 30s 30s

Table 4.2: Parameter setting for existing algorithms. G is the gap between packet trains.
R is the rate of probe. N is the number of probe packets in each sub-train. D is the gap
between each sub-train.

each measurement sample consists of a set of probe trains with increasing probe rate.

The distance in time between each measurement sample is identified with parameter D

(distance). With these four parameters, we can emulate most probe traffic used in prior

work, as shown in Table 4.2. For example, to emulate Spruce probes, we can set the

parameters (N,R,G,D) to the values (2, 500Mbps, 1.2ns, 48us), which would generate

a pair of probe packets every 48 us with minimal inter-packet gap (12 /I/characters or

1.2ns) at 500Mbps (5% of the capacity of a 10Gbps link), as intended by the original

Spruce Algorithm [188]. Similarly, to reproduce the IGI experiment results [81], we

set the parameters (N,R,G,D) to the values (60, [0.1:0.1:9.6]Gbps, 30s, 30s) to gen-

erate probe trains of 60 packets every 30 seconds with rate ranging from 100Mbps to

9.6Gbps at 100Mbps increments. In summary, most types of existing probe trains can

be emulated with the generalized model we developed for MinProbe , where different

points in the parameterization space can represent different points in the entire design

space covering prior art and possibly new algorithms.

In the following sections, we use a parameterization that is similar to Pathload, which

estimates available bandwidth based on the increasing one-way delay (OWD) in probe

trains. If the rate of a probe train is larger than the available bandwidth of the bottleneck

link, the probe train will induce congestion in the network. As a result, the last packet

of the probe train will experience longer queuing delays compared to the first packet of

the same probe train. The difference between the OWD of the last packet and the first

117

packet of the same probe train can be used to compute the increasing OWD in the probe

train. On the other hand, if a probe train does not induce congestion, then there will be

no change in the OWD between the first and last packet. Thus, if an available bandwidth

estimation algorithm sends probe trains at different rates R, it will estimate the available

bandwidth to be the lowest probe train rate R where the OWD (queuing delay) increases.

A bandwidth estimation algorithm based on Pathload needs to measure the change

(increase) in OWD between the first and last packet in a probe train. Since we can mea-

sure the gaps between subsequent packets, we show that the interpacket gap information

is sufficient to compute the increase in the OWD of a probe packet train.

Proof. Consider sending a train of n packets with packet sizes s1, s2, . . ., sn and inter-

packet gaps g1, g2, . . ., gn−1 from host A to host B through a network path. The received

packets at host B experiences one-way delays of q1, q2, . . ., qn through the network and

now have interpacket gaps h1, h2, . . ., hn−1. Assume no packet losses due to network

congestion, and no packet reordering in the network. Then we want to show that the

difference in one-way delay of the first and last packets is equal to the total increase in

interpacket gaps, i.e. qn − q1 =
∑

hi −
∑

gi.

Initially, the length of the packet train measured from the first bit of the first packet

to the last bit of the nth packet is given

lA =

n−1∑
i=1

gi +

n∑
j=1

s j (4.1)

Similarly at the receiving end

lB =

n−1∑
i=1

hi +

n∑
j=1

s j (4.2)

118

Additionally, the difference in one-way delay tells us that

lB = lA + (qn − q1) (4.3)

Substitute the relationship for lA and lB and we can see that the difference in one-way

delay is equivalent to the difference of interpacket gap. �

4.4.3 Implementation

We built a prototype of MinProbe on the programmable network interface, SoNIC ,

platform with two 10 GbE ports [113]. The detailed design of the SoNIC platform

has been described in prior work [113]. Here, we briefly recount the main features of

SoNIC . SoNIC consists of two components: a software stack that runs on commodity

multi-core processors, and a hardware PCIe pluggable board. The software implements

all of the functionality in the 10GbE physical layer that manipulates bits to enable access

to /I/in software. The hardware performs line-speed data transfer between the 10 GbE

transceiver and the host. To enable the high-fidelity network measurements required by

MinProbe , we extended SoNIC ’s capabilities with three new features:

Packet Filtering and Forwarding: We extended SoNIC to support packet forwarding

and filtering at line rate. Packet forwarding preserves the timing characteristics of the

pass-through traffic exactly: Data is copied from an incoming port to an outgoing port,

including the exact number of /I/characters in between each packet. To filter for probe

packets, we use an in-kernel flow table that matches on the 5-tuples of a packet IP

header. The packets that have a match are temporarily buffered in a queue, interpacket

gap modulated, and sent once enough packets have been buffered for a single packet

train (a measurement sample).

119

forwarding path

middlebox daemon

gap extraction

userspace

kernel space

!ow table

measurement

 algorithm mbox-ctl

Figure 4.13: MinProbe Architecture.

Packet Gap Extraction and Manipulation: MinProbe has two operational modes:

a modulation mode for sending probes and an extraction mode for receiving probes.

In the modulation mode, we extended SoNIC with additional packet queues for tem-

porarily buffering of probe packets, and modified the amount of /I/characters in front

of the buffered packet to change the packet spacing. If /I/characters are removed

from the probe packet trains to increase the probe rate, we compensate for the loss of

/I/characters at the end of the probe packet train to conform to the 10 GbE standard,

and vice versa. In the extraction mode, the number of /I/characters are extracted from

the matched probe packet trains and sent to the userspace programs via kernel upcalls.

Application Programming Interface: The last feature we added was the userspace ac-

cessibility. Users can insert/remove flow entries, dynamically adjust probe packet gaps,

and retrieve probe packet gap counts from MinProbe . It is required to implement a

flexible user and kernel space communication channel for passing measurement data

and control messages between user and kernel space. We used the netlink [16] proto-

col as the underlying mechanism and implemented the exchange of information using

120

Function Description Example
set mode set middlebox

mode
set mode

set gap set gap between
probes

set gap(120,120,120)

flow add add flow used as
probes

flow add(srcip,dstip)

Table 4.3: Application Programming Interface.

netlink messages. For example, we encapsulate the interpacket gaps in a special netlink

message, and transmitted it from kernel to userspace, and vice versa.

4.4.4 Evaluation

MinProbe can accurately estimate the available bandwidth in high-speed networks with

minimal overhead. To demonstrate its capabilities and accuracy, we evaluated Min-

Probe over three different physical networks: Two topologies in our controlled environ-

ment and the National Lambda Rail (NLR). We used a controlled environment to study

the sensitivity of estimation accuracy to various network conditions. We also evaluated

MinProbe on NLR to study its performance in wide area networks. To highlight the

accuracy MinProbe is capable of, Figure 4.17 in Section 4.4.4 shows that MinProbe can

accurately estimate the available bandwidth within 1% of the actual available bandwidth

in a 10Gbps network with topology shown in Figure 4.15a.

Experimental setup Our evaluation consists of two parts: Controlled environment

experiments and wide area network (WAN) experiments. For the WAN experiments,

we evaluate MinProbe over the National Lambda Rail (NLR). NLR is a transcontinental

production 10Gbps Ethernet network shared by research universities and laboratories

with no restriction on usage or bandwidth. As a result, traffic in the NLR is typically

121

Cornell (NYC)

NYC

Chicago

Cleveland

Boston

Cornell (Ithaca)

MP0 MP1 App1App0

Figure 4.14: National Lambda Rail Experiment.

bursty, yet persistent, and similar to the Internet. We provisioned a dedicated virtual

route that spans nine routing hops over 2500 miles, as shown in Figure 4.14. Since the

underlying physical network is also shared with other provisioned routes, we observed

persistent cross traffic between 1 Gbps to 3.5 Gbps.

For the controlled environment experiments, we set up two different network topolo-

gies in a 10 Gbps network testbed: Dumb-bell (DB) and parking-lot (PL), as illustrated

in Figure 4.15 and described in [202]. We used one MinProbe middlebox (MP0) to

modulate the application traffic generated from a server directly connected to MP0 . We

used the other MinProbe middlebox (MP1) as the receiver of the modulated probes to

capture the timing information from the application traffic. A network of one or more

hops separated the two middleboxes, where one link was a bottleneck link (i.e. a tight

link with the least available bandwidth). Our experiments attempted to measure and esti-

mate the available bandwidth of this bottleneck (tight) link. The testbeds were built with

commercial 10 GbE switches, represented by circles in Figure 4.15. MinProbe middle-

boxes and hosts that generated cross traffic were separately connected to the switches

122

N0 N1

MP0 MP1

APP0 APP1

(a) Dumb-bell

N0 N2

MP0 MP1

APP0 APP1

N4 N6 N7

N1 N3 N5

(b) Parking lot

Figure 4.15: Controlled Experiment Topologies.

using 10 GbE links, illustrated with the solid line. In the DB topology, the link between

the two switches is the bottleneck (tight) link. In the PL topology, the bottleneck (tight)

link depends on the pattern of the cross traffic.

MP0 and MP1 were Dell PowerEdge T710 servers. Each server had two Intel Xeon

Westmere [15] X5670 2.93GHz processors, with six cores in each CPU and a total of 24

GB RAM. The Westmere architecture of the processor is well-known for its capability

of processing packets in a multi-threaded environment [62, 79, 135]. The switches used

in the environment consisted of an IBM G8264 RackSwitch and a Dell Force10 switch,

with network divided into separate logical areas using VLANs.

We used three different classes of cross traffic for our controlled experiments. Fig-

ure 4.16 illustrates the time series characteristics of all three traffic classes. The different

classes of cross traffic are also described below.

Constant bit rate cross traffic (CBR1): CBR1 cross traffic consists of fixed-sized

and uniformly distributed packets. In particular, CBR1 traffic is a stationary traffic with

123

1.5G

2.0G

2.5G

3.0G

3.5G

4.0G

 0 10 20 30 40 50 60

Th
ro
ug
hp
ut
 (
Gb
ps
)

Time (seconds)

10ms
100ms
1000ms

(a) CAIDA OC-192 trace

 0.01

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30

6.4ns 1.6us 26us 1.6ms 53ms

En
er
gy

timescale

Energy

(b) Energy plot for CAIDA trace

2.6G

2.8G

3.0G

3.2G

3.4G

0.0

Th
ro
ug
hp
ut
 (
Gb
ps
)

Time (seconds)

highly bursty CBR2
moderately bursty CBR2

CBR1

(c) Synthesized traffic

 0.01

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30

6.4ns 819ns 26us 3.4ms 53ms

En
er
gy

timescale

highly bursty p=0.1
moderately bursty, p=0.4
constant bitrate, p=1.0

(d) Energy plot for synthesized traffic

Figure 4.16: The time series and wavelet energy plots for cross traffic used in controlled
experiments. Figure 4.16a shows a time series of a CAIDA trace in three different time
scales: 10ms, 100ms and 1s. Coarser time scale means longer averaging period, hence
less burstiness. Figure 4.16b shows the corresponding wavelet energy plot for the trace
in Figure 4.16a. Figure 4.16c shows three different traces with different traffic burstiness
of the same time scale. Figure 4.16d shows the corresponding wavelet energy plot, with
higher energy indicating more burstiness.

constant average data rate over long time scale (milliseconds), and interpacket gaps are

uniform (i.e. variance is zero).

Stationary, but bursty cross traffic (CBR2): The second class of cross traffic was

generated from stationary but bursty distributions, CBR2. CBR2 is created by varying

both the packet size and packet chain length distributions with two parameters Dsize

and Dlen. Both parameters range from 0.0 (zero variance) to 1.0 (high variance). We

draw the packet size from a log-normal distribution which has been demonstrated to

closely resemble the distribution of Internet traffic in [120]. The mean of the log-normal

124

distribution is fixed, while the variance is controlled by the parameter Dsize to be Dsize ·

Vsize, whereVsize is a fixed high variance value. A packet chain is a series of consecutive

packets with minimal interpacket gap in between, and from [67], we know its length

takes on a geometric distribution. The parameter of the geometric distribution is taken

to be 1 −Dlen. Thus, CBR1 is a special case of CBR2 where bothDsize andDlen equals

0.0.

CAIDA: In the third scheme, we generated cross traffic from a real internet trace. In

particular, we used the CAIDA OC-192 [21] trace which was recorded using a DAG

card with nano-second scale timestamps.

While there is not one commonly accepted definition for traffic burstiness in the lit-

erature, burstiness generally refers to the statistical variability of the traffic. In other

words, high variability in traffic data rates implies very bursty traffic. Variability, and

by extension, traffic burstiness could be captured by wavelet-based energy plot [196].

Specifically, the energy of the traffic represents the level of burstiness at a particular

timescale (e.g. at the microsecond timescale). The higher the energy, the burstier is the

traffic. Figure 4.16b and 4.16d illustrate this wavelet-based energy plot when applied to

the byte arrivals for CAIDA Internet traces and synthetically generated traffic, respec-

tively. The x-axis represents different time scale, ranging from nano-second to second in

log scale. The y-axis represents the abstracted energy level at a particular time scale. We

were mostly interested in the micro-second timescale, which correspond to x-axis val-

ues around 15. Notice that the synthetic traffic behave very much like CAIDA internet

traces for energy levels for these values.

For most experiments, we used 792 bytes as the application traffic packet size, which

according to [21], is close to the average packet size observed in the Internet. We ad-

justed the traffic data rate by varying interpacket gaps (IPG). In particular, we insert a

125

Packet size Data Rate Packet Rate IPD IPG
[Bytes] [Gbps] [pps] [ns] [/I/]

792 1 156250 6400 7200
792 3 467814 2137 1872
792 6 935628 1068 536
792 8 1250000 800 200

Table 4.4: IPD and IPG of uniformly spaced packet streams.

specific number of /I/’s between packets to generate a specific data rate.

We controlled the exact data rate of CBR1 and CBR2 since we control the exact

number of /I/’s inserted between packets. However, for the CAIDA traces, we selected

portions of the trace recording times to obtain different average data rates. In addition,

when we replay a trace, we only need to preserve the timing information of the trace, not

the actual payload. We used SoNIC to replay the CAIDA trace. As described in [113],

SoNIC can regenerate the precise timing characteristics of a trace with no deviation from

the original.

Baseline Estimation How does available bandwidth estimation perform using Min-

Probe in a base case: A simple topology with a couple to several routing hops (Fig-

ure 4.15.a and b) and uniform cross traffic (uniform packet size and interpacket gaps)?

We illustrate the result with the following experiments.

In the first experimental network setup, we use a dumb-bell topology with two rout-

ing hops and a single bottleneck link (Figure 4.15a). Cross traffic is generated with a

constant bit rate that has uniform packet sizes and interpacket gaps (CBR1). Node N0

sends cross traffic to node N1 according to the CBR1 uniform distribution.

The second experimental setup is similar to the first except that we use a parking-

lot topology (Figure 4.15b). Further, cross traffic is generated with the CBR1 uniform

126

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Es
ti

ma
te

d
Av

ai
la

bl
e

Ba
nd

wi
dt

h(
Gb

ps
)

Actual Available Bandwidth(Gbps)

Dumb-bell topology
Parking-lot topology

Figure 4.17: Available bandwidth estimation in a dumb-bell and parking-lot topology
under CBR traffic. Both cross traffic and probe traffic share one bottleneck with the ca-
pacity of 10Gbps. The x-axis represents the actual available bandwidth of the bottleneck
link. The y-axis represents the estimation by MinProbe . This evaluation demonstrates
MinProbe ’s ability to accurately measure the available bandwidth and achieve the esti-
mation with minimal probing overhead.

distribution between neighboring nodes: Neven to Nodd (e.g. N0 to N1, N2 to N3, etc).

Thus, we can control the cross traffic separately on each link.

In all experiments, we varied the data rate of the CBR1 cross traffic from 1 Gbps to

8 Gbps with an increment of 1 Gbps each time. We configured MP0 to modulate ap-

plication traffic from APP0 destined to APP1 to create probe packet samples. Note that

there is no overhead since we are not introducing any new packets. Further, we config-

ured MP1 to capture the timing information of the probe packet samples (i.e. application

traffic destined to APP1 from source APP0). The probe packets modulated by MP0 were

parameterized using the model introduced in Section 4.4.2. We used the parameters

(N,R,G,D) = (20, [0.1 : 0.1 : 9.6] Gbps, 10 us, 4 ms) where MP0 sends a probe packet

127

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2 4 6 8 10

Qu
eu

in
g

De
la

y
Va

ri
an

ce

Probe Rate(Gbps)

(a) 1 Gbps

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2 4 6 8 10

Qu
eu

in
g

De
la

y
Va

ri
an

ce

Probe Rate(Gbps)

(b) 3 Gbps

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 2 4 6 8 10

Qu
eu

in
g

De
la

y
Va

ri
an

ce

Probe Rate(Gbps)

(c) 6 Gbps

 0

 2000

 4000

 6000

 8000

 10000

 0 2 4 6 8 10

Qu
eu

in
g

De
la

y
Va

ri
an

ce

Probe Rate(Gbps)

(d) 8 Gbps

Figure 4.18: Scatter-plot showing the queuing delay variance of probe packets versus
the probe rate. The cross traffic rate are constant at 1Gbps, 3Gbps, 6Gbps and 8Gbps.
We used probe with N=20, R=[0.1:0.1:9.6]Gbps, G=10us, D=4ms.

sample every 4 ms enabling us to collect 250 samples per second. Each probe sample

consists of 96 constant bit rate (CBR) trains with a 10 us gap between trains. Each train

runs at an increasing data rate ranging from 0.1 Gbps to 9.6 Gbps, with an increment of

0.1 Gbps. Recall that we are able to precisely control the data rate of trains by control-

ling the interpacket gap between probe packets within the train (e.g. See Table 4.4). We

assume node APP0 generates enough application traffic to create probe packet samples.

Figure 4.17 shows the result. It shows the actual available bandwidth on the x-axis

and estimated available bandwidth on the y-axis for the the dumb-bell and parking-lot

topologies. We estimated the available bandwidth with the mean of 10 measurement

128

samples. The estimations in the dumb-bell topology were within 0.1 Gbps of the actual

available bandwidth. The estimations in parking-lot topology tended to under-estimate

the available bandwidth, due to the multiple bottleneck links in the network path. Higher

available bandwidth scenarios were more difficult to measure as accurately in a multiple-

hop network path. Alternatively, the maximum value of a measurement could be used

to estimate available bandwidth if the estimation was always overly conservative; this

would actually increase the estimation accuracy.

Figure 4.18 shows the raw probe sample data that was used to estimate the available

bandwidth of different cross traffic rates in the dumb-bell topology. The x-axis is the

rate (R) at which the probe trains were sent. The y-axis is the variance of the queuing

delay, which was computed from the one-way delay (OWD) experienced by the packets

within the same probe train. We kept the cross traffic rate constant at 1Gbps, 3Gbps,

6Gbps and 8Gbps. The available bandwidth was estimated to be the turning point where

the delay variance shows an significant trend of increasing.

Impact of Application Traffic Next, we study whether MinProbe is impacted by

characteristics of application traffic. In particular, we focus on two characteristics that

matter the most for available bandwidth estimation: the length of a probe train and the

distribution of probe packet sizes. The length of a probe train affects the delay experi-

enced by application traffic (See the description of probe train length in Section 4.4.2

and equation 4.1). The longer the probe train, the longer the application traffic has to

be buffered in the middlebox, resulting in longer delays the application traffic experi-

ences. Typically, a probe train consists of around 100 or more packets [84, 173]. A

probe train of two packets is essentially similar to the packet pair scheme described by

Spruce [188].

129

Creating probe packet trains from variable sized packets is difficult because packets

with different sizes suffer different delays through a network. Because MinProbe does

not have control over the application traffic that is used as packet probes, it is important

to understand how the accuracy of MinProbe changes with different distributions of

probe packet sizes. Another consideration is that many estimation algorithms prefer

large probe packets to small packets [84, 173].

We evaluate the effect of the length of a probe packet train (i.e. the number of

packets in a train) to the accuracy of available bandwidth estimation in Section 4.4.4

and the effect of the distributions of probe packet sizes in Section 4.4.4 and 4.4.4. For

these experiments, we always used CBR1 as cross traffic.

Impact of Varying Probe Train Length In order to understand how the number of

packets in a probe packet train affects the accuracy of MinProbe , we varied the number

of packets in each train while using the same parameters as the baseline experiment

(Section 4.4.4). In particular, we used (N, [0.1 : 0.1 : 9.6] Gbps, 10 us, 4 ms) while

increasing N from 5 to 100. Table 4.5 illustrates the estimated available bandwidth

when different train lengths were used.

The actual available bandwidth is shown in the row marked “Actual” and the esti-

mated available bandwidth is in the rows below “Length” in Table 4.5.

As shown in the table, increasing the number of probe packets per flow yields di-

minishing returns. A probe train with five packets is not as accurate as the baseline ex-

periment with 20 packets regardless of the actual available bandwidth. However, trains

with larger than 20 packets result in similar estimation accuracy.

The take-away: Increasing the number of packets in a probe packet train does not

130

Available Bandwidth [Gbps]
Dumb-bell Parking-lot

Actual 1.9 3.9 6.9 8.9 1.9 3.9 6.9 8.9
Length Estimated Available Bandwidth [Gbps]

5 2.57 5.57 8.54 9.5 1.99 4.41 6.57 8.59
20 2.07 3.96 6.97 8.8 1.80 3.80 6.90 8.30
40 1.9 3.87 6.94 8.68 1.80 3.86 6.70 8.50
60 1.85 3.79 6.79 8.70 1.80 3.80 6.76 8.56
80 1.86 3.79 6.90 8.70 1.80 3.75 6.78 8.44

100 1.83 3.96 6.79 8.55 1.80 3.70 6.56 8.02

Table 4.5: Estimation with different probe train length.

Available Bandwidth [Gbps]
Dumb-bell Parking-lot

1.9 3.9 6.9 8.9 1.9 3.9 6.9 8.9

Size [B] Estimated Bandwidth [Gbps]
64 9.47 9.50 9.50 9.50 9.50 9.50 9.50 9.50

512 2.06 4.51 7.53 8.9 1.85 3.76 6.64 8.09
792 2.07 3.96 6.97 8.8 1.80 3.80 6.90 8.30
1024 1.90 3.97 7.01 8.83 1.80 3.75 6.72 8.54
1518 1.81 3.88 6.91 8.84 1.80 3.81 6.83 8.48

Table 4.6: Estimation results with different probe packet size.

necessarily result in more accurate estimation. The minimum number of packets to

obtain accurate estimation results was about 20 packets. More packets in a probe train

elongate the delay of applications traffic due to buffering, but do not improve estimation

accuracy.

What happens when there is not enough packets between a source and destination

pair? This highlights the fundamental trade-off between application latency and prob-

ing overhead. MinProbe has a timeout mechanism to deal with this corner case. If the

oldest intercepted packet has exceeded a pre-defined timeout value, MinProbe will gen-

erate dummy probe packets to fulfill the need for probe packets and send out the probe

131

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

Packet size CDF

Figure 4.19: The distribution of probe packet sizes from the CAIDA trace.

train. Since MinProbe requires much shorter probe trains compared to existing tools,

opportunistically inserting additional dummy packets add minimal overhead.

Impact of Varying Probe Size Next, we evaluated MinProbe with different packet

sizes for probes. All the parameters were the same as in the baseline experiment except

that we varied the size of packets for probes from 64 bytes to 1518 bytes (the minimum

to maximum sized packets allowed by Ethernet). In particular, we used (20, [0.1 : 0.1 :

9.6] Gbps, 10 us, 4 ms) while increasing probe packet sizes from 64 to 1518 bytes. As

can be seen from Table 4.6, larger packet sizes (more than 512 bytes) perform better

than smaller packet sizes in general. Note that we used 792 byte packets in our baseline

experiment, which resulted in similar available bandwidth estimate accuracy as 1518

byte probe packets. On the other hand, smaller probe packets, such as 64 byte packets

resulted in poor accuracy. This result and observation is consistent with the previous

results from literature such as [173]. The take-away is that probe trains with medium to

large packet sizes perform better than trains of smaller packet sizes.

132

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10Es
ti
ma
te
d
Av
ai
la
bl
e
Ba
nd
wi
dt
h(
Gb
ps
)

Actual Available Bandwidth(Gbps)

Figure 4.20: Estimation with probe packets drawn from the CAIDA trace.

Mixed Probe Packet Sizes In a real network, the distribution of packet sizes is usually

mixed with large and small packets. Figure 4.19 shows the distribution of packet sizes in

a recorded Internet trace. We repeat the previous experiment using the baseline setting,

except that in this case, we use APP0 to replay the Internet trace. We let MP0 modulate

the probe train in presence of mixed-sized probe traffic. For each rate R ∈ [0.1, 9.6],

MP0 ensures that the interpacket gaps between packets of the same flow are uniform.

Figure 4.20 shows the result for CBR1 cross traffic. As can be seen, even though a

probe train has mixed packet sizes, the estimation result is still accurate. The reason is

that small packets only take a small fraction of total probe train length with respect to

large packets. The estimation accuracy is largely determined by the large packets, thus

remains accurate.

Impact of Cross Traffic Characteristics So far, we have evaluated MinProbe under

the assumption of constant bit-rate cross traffic. In this section, we no longer make this

assumption and instead examine MinProbe under bursty cross traffic. In particular, we

evaluate MinProbe using modeled synthetic bursty traffic (CBR2) and realistic Internet

133

traces.

Cross Traffic Burstiness Synthesized Traffic: We first show the results of synthe-

sized bursty cross traffic (CBR2). We generated CBR2 with rate ∈ [1, 3, 6, 8] Gbps. We

set Vsize to be a fixed large variance value, e.g. 8 × 104 bytes2, as specified in [120].

Next, we varied the distributionDsize of packet sizes in CBR2 from 0 to 1 with 0.1 step

size. 0 means uniform distribution, 1 means distribution with large variance. Similarly,

we varied the distributionDlen of packet chain length in CBR2 from between 0 to 1 with

0.1 step size. Note that even though CBR2 is bursty in terms of the variation of packet

distribution, the long term average data rate of CBR2 remains constant.

Figure 4.21 shows the estimation error (in Gbps) over a range of cross traffic bursti-

ness for four different cross traffic data rates. In each figure, we plot the difference

between the actual available bandwidth and the estimated available bandwidth for the

cross traffic burstiness identified by the (Dsize,Dlen) parameters. Traffic close to the bot-

tom left corner was more uniformly distributed in both packet sizes and train lengths.

Traffic on the top right corner was burstier. Dark gray colors mean under estimation, and

light gray colors mean over estimation. As shown in the figure, the estimation error by

MinProbe is typically within 0.4 Gbps of the true value except when the link utilization

is low, or the cross traffic is bursty.

Real Internet Trace: Next, we evaluate MinProbe with traces extracted from CAIDA

anonymized OC192 dataset [21], and replayed by SoNIC as a traffic generator. Fig-

ure 4.22a shows an example of the raw data captured by MinProbe . We observed

that real the traffic traces were burstier than the synthesized traffic in the previous sec-

tion. To compensate, we used standard exponential moving average (EMA) method to

smooth out the data in Figure 4.22a. For each data points in Figure 4.22a, the value

134

1.00.90.80.70.60.50.40.30.20.1
Packet Size Distribution (Dsize)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Pa
ck
et
 C
ha
in
 L
en
gt
h
Di
st
ri
bu
ti
on
 (
D l

en
)

-0.4

-0.2

 0

 0.2

 0.4

(a) 1 Gbps

1.00.90.80.70.60.50.40.30.20.1
Packet Size Distribution (Dsize)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Pa
ck
et
 C
ha
in
 L
en
gt
h
Di
st
ri
bu
ti
on
 (
D l

en
)

-0.4

-0.2

 0

 0.2

 0.4

(b) 3 Gbps

1.00.90.80.70.60.50.40.30.20.1
Packet Size Distribution (Dsize)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Pa
ck
et
 C
ha
in
 L
en
gt
h
Di
st
ri
bu
ti
on
 (
D l

en
)

-0.4

-0.2

 0

 0.2

 0.4

(c) 6 Gbps

1.00.90.80.70.60.50.40.30.20.1
Packet Size Distribution (Dsize)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Pa
ck
et
 C
ha
in
 L
en
gt
h
Di
st
ri
bu
ti
on
 (
D l

en
)

-0.4

-0.2

 0

 0.2

 0.4

(d) 8 Gbps

Figure 4.21: Bandwidth estimation accuracy with different cross traffic burstiness. On
y-axis, we turn the knob from no clustering to batching. On x-axis, we turn the knob on
cross traffic packet size distribution from uniform distribution to log-normal distribution.
We plot the graph for different cross traffic rate: 1Gbps, 3Gbps, 6Gbps and 8Gbps.

was replaced by the weighted average of the five data points preceding the current data

point. Figure 4.22b shows the result. Similar to the highly bursty synthesized cross

traffic, we achieved a similarly accurate estimation result for the real traffic trace via

135

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 2 4 6 8 10

Qu
eu

in
g

De
la

y
Va

ri
an

ce

Probe Rate(Gbps)

(a) raw measurement

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 2 4 6 8 10

Qu
eu

in
g

De
la

y
Va

ri
an

ce

Probe Rate(Gbps)

(b) after moving average

Figure 4.22: Bandwidth estimation of CAIDA trace, the figure on the left is the raw data
trace, the figure on the right is the moving average data.

using the EMA. The estimation error was typically within 0.4Gbps of the true available

bandwidth.

In summary, while bursty cross traffic resulted in noisier measurement data than

CBR, we were able to compensate for the noise by performing additional statistical pro-

cessing in the bandwidth estimation. Specifically, we found using the EMA smoothed

the measurement data and improved the estimation accuracy. As a result, we observed

that cross traffic burstiness had limited impact on MinProbe .

MinProbe In The Wild In this section, we demonstrate that MinProbe works in a

wide area Internet network, the National Lambda Rail (NLR). Figure 4.14 illustrates the

experimental network topology. We setup a dedicated route on the NLR with both ends

terminating at Cornell University. Node APP0 generated application traffic, which was

modulated by MP0 using parameter (N,R,G,D) = (20, [0.1 : 0.1 : 9.6] Gbps, 10 us,

4 ms). The traffic was routed through the path shown in Figure 4.14 across over 2500

miles. Since it was difficult to obtain accurate readings of cross traffic at each hop, we

relied on the router port statistics to obtain a 30-second average of cross traffic. We

observed that the link between Cleveland and NYC experienced the most cross traffic

136

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1000 2000 3000 4000 5000 6000 7000Es
ti

ma
te

d
Cr

os
s

Tr
af

fi
c(

Gb
/s

)

Time (ms)

raw measurement samples
moving average over 250 ms

moving average over 1 s

Figure 4.23: Measurement result in NLR.

compared to other links, and was therefore the bottleneck (tight) link of the path. The

amount of cross traffic was 1.87 Gbps on average, with a maximum of 3.58 Gbps during

the times of our experiments.

Figure 4.23 shows the result of MinProbe in the wild. We highlight two important

takeaways: First, the average of our estimation is close to 2 Gbps, which was consistent

with the router port statistics collected every 30 seconds. Second, we observed that

the readings were very bursty, which means the actual cross traffic on NLR exhibited a

good deal of burstiness. In summary, MinProbe performed well in the wild, in the wide

area. The available bandwidth estimation by MinProbe agreed with the link utilization

computed from switch port statistical counters: The mean of the MinProbe estimation

was 1.7Gbps, which was close to the 30-second average 1.8Gbps computed from switch

port statistical counters. Moreover, MinProbe estimated available bandwidth at higher

sample rate and with finer resolution.

Many cloud datacenters and federated testbeds enforce rate limits on their tenants.

For example, the tenants are required to specify the amount of bandwidth to be re-

137

served at the time of provisioning. However, many bandwidth estimation algorithms

need to send probe traffic at high data rates to temporarily saturate the bottleneck link.

As a result, rate limiting may affect the applicability of the algorithms. We tested the

MinProbe middlebox inside a federated testbed, ExoGENI, with a virtual network pro-

visioned at 1Gbps on a 10Gbps physical network. We used MinProbe to send probe

packet trains with different lengths at line rate to find the maximum length of packet

train that could be sent before throttled by rate limiters. We found that, in the provi-

sioned 1Gbps virtual network, if the probe train was less than 1200 packets, then there

was no observable packet loss. As has been shown in Section 4.4.4, MinProbe only uses

probe trains with less than 100 probe packets. As a result, and interestingly, rate limiters

do not impact the applicability of MinProbe in federate testbed environments.

Software Router and Other Hardware Finally, we evaluate whether other middle-

boxes, such as software routers, can be used to perform high-fidelity network measure-

ments required to accurately estimate available bandwidth without any overhead. In

particular, we evaluated two software routers, one based on the Linux kernel network

datapath, and another based on the Intel DPDK driver [64]. We configured the software

routers to perform L2 forwarding from one port to another. Again, we used the base-

line setup, with the exception that software routers were placed between MinProbe and

the switch. The network path started at the application. After MinProbe modulated the

application traffic to create packet probe trains, the probe trains were passed through a

software router before being sent to a 10 GbE switches.

The experiment was generated from probe packet trains with data rates ranging ac-

cording to (N,R,G,D) = (20, [0.5 : 0.5 : 9.5] Gbps, 10 us, 4 ms). We show two figures

from the this experiment to illustrate the result. First, Figure 4.24a shows the CDF of

the measured instantaneous data rate of probe packet pairs passing through a software

138

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

CD
F

Bitrate (Gbps)

Intel DPDK L3 forward, 1us burst
Linux kernel ixgbe L3 forward

minProbe forward

(a)

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350 400

In
st
an
ta
ne
ou
s
Pr
ob
e
Pa
ck
et
 P
ai
r
Ra
te
(G
pb
s)

Packet Number

Intel DPDK L3 forward, 1us burst
Linux kernel ixgbe L3 forward

minProbe forward

(b)

Figure 4.24: Software Routers do not exhibit the same fidelity as MinProbe .

router (i.e. we measured the interpacket gap of probe packet pairs after passing through

a software router). We configured each software router to forward each packet as soon

as it received the packet to minimize any batching. Since we generated an equal number

of probe packets (20) for a probe train and increased the probe packet train data rate by

0.5 Gbps, the ideal CDF curve should increase along a diagonal frp, 0.5 Gbps to 9.5

Gbps at 0.5 Gbps increments (the red line). However, as seen in the figure, over 25%

of the probe packet pairs in the Intel DPDK-based software router were batched with

139

minimum interpacket gap: Batching can be seen via the large increase in the CDF near

the highest data rate close to 10 Gbps. Worse, the vanilla kernel datapath (with ixgbe

kernel driver) batched over 40% of packets. These results were consistent with the ex-

isting research findings that show that network interface cards (NICs) generate bursty

traffic at sub-100 microsecond timescale. [93]

Second, Figure 4.24b highlights the same result but slightly differently. The x-axis

is the packet number and the y-axis is the measured instantaneous probe packet pair

rate (in Gbps). The figure shows that MinProbe was able to modulate interpacket gaps

to maintain the required probe data rate (all 20 packets in a probe train exhibited the

target data rate), while the software routers were not able to control the probe rate at

all. To summarize, due to batching, software routers are not suitable for performing the

required high-fidelity available bandwidth estimation on high-speed networks.

Next, we investigated the question if prior work such as MGRP [160] could perform

on high-speed networks? To answer this, we setup MGRP to perform the same baseline

estimation experiment in Figure 4.17. Unfortunately, the result was consistent with our

findings above and in Figures 4.24a and 4.24b. In particular, we found that MGRP could

not report valid results when it was used in high-speed networks (10Gbps Ethernet). The

accuracy of MGRP was limited by its capability to precisely timestamp the received

probe packets and its ability to control the probe packet gaps. Both of these capabilities

were performed at kernel level in MGRP and were prone to operating system level noise.

The accuracy of MGRP was better than Pathload [84], it eliminated the overhead of extra

probing traffic, but the fundamental accuracy was still constrained by the measurement

platform.

Finally, we studied the sensitivity of bandwidth estimation with respect to network

hardware. In particular, we experimented with three different 10 GbE switches: IBM

140

 0

 10

 20

 30

 40

 50

 60

 70

 80

8.008.108.208.308.408.508.608.708.808.909.009.109.209.309.40Pr
ob
e
Pa
ck
et
 Q
ue
ue
in
g
De
la
y
(b
yt
es
)

Probe Traffic Rate(Gbps)

NetFPGA
Dell
IBM

Figure 4.25: Estimating Available Bandwidth on different switches.

G8264T, Dell S4810, and NetFPGA-10G reference switch design [128]. We used the

baseline setup for all experiments and configured all three switches to perform L2 for-

warding. Figure 4.25 illustrates an example of captured queuing delay after each hard-

ware. As can be seen from the figure, the three switches can be used nearly interchange-

ably since there was no significant difference in queuing delay. As a result, we have

found that the underlying hardware itself may not contribute to the available bandwidth

estimation. Instead, as earlier results in the section indicate, the fidelity of the available

bandwidth estimation depend more on the ability to control generated interpacket gaps

and measure received interpacket gaps.

4.5 Application: Precise Clock Synchronization

This work appears in Globally Synchronized Time via Datacenter Networks in SIG-

COMM 2016, with co-authors Ki Suh Lee, Vishal Shrivastav, and Hakim Weatherspoon.

In this section, we describe an application that uses programmable PHY to improve

the precision and efficiency of clock synchronization by running a protocol in the phys-

141

ical layer of the network protocol stack. We leverage the observation that two machines

physically connected by an Ethernet link are already synchronized: Synchronization is

required to reliably transmit and receive bitstreams. The question, then, is how to use

the bit-level synchronization of the physical layer to synchronize clocks of distributed

systems in a datacenter, and how to scale the number of synchronized machines from

two to a large number of machines in a datacenter? We first state the problem of clock

synchronization, why it is hard to achieve better precision and scalability with current

approaches, and how synchronizing clocks in the physical layer can improve upon the

state-of-the-art.

4.5.1 Background

Terminology A clock c of a process p1 is a function that returns a local clock counter

given a real time t, i.e. cp(t) = local clock counter. Note that a clock is a discrete function

that returns an integer, which we call clock counter throughout the paper. A clock

changes its counter at every clock cycle (or tick). If clocks ci for all i are synchronized,

they will satisfy

∀i, j, t |ci(t) − c j(t)| ≤ ε (4.4)

where ε is the level of precision to which clocks are synchronized. Accuracy refers to

how close clock counters are to true time [177].

Each clock is driven by a quartz oscillator, which oscillates at a given frequency.

Oscillators with the same nominal frequency may run at different rates due to frequency
1We will use the term process to denote not only a process running on a processor but also any system

entities that can access a clock, e.g. a network interface card.

142

variations caused by external factors such as temperature. As a result, clocks that have

been previously synchronized will have clock counters that differ more and more as

time progresses. The difference between two clock counters is called the offset, which

tends to increase over time, if not resynchronized. Therefore, the goal of clock synchro-

nization is to periodically adjust offsets between clocks (offset synchronization) and/or

frequencies of clocks so that they remain close to each other [177].

If a process attempts to synchronize its clock to true time by accessing an external

clock source such as an atomic clock, or a satellite, it is called external synchronization.

If a process attempts to synchronize with another (peer) process with or without regard

to true time, it is called internal synchronization. Thus, externally synchronized clocks

are also internally synchronized, but not vice versa [54]. In many cases, monotonically

increasing and internally synchronized clocks are sufficient. For example, measuring

one-way delay and processing time or ordering global events do not need true time. As

a result, in this paper, we focus on how to achieve internal synchronization: We achieve

clock synchronization of all clocks in a datacenter with high precision; however, their

clock counters are not synchronized to an external source.

Clock Synchronization Regardless of whether the goal is to achieve internal or ex-

ternal synchronization, the common mechanism of synchronizing two clocks is similar

across different algorithms and protocols: A process reads a different process’s current

clock counter and computes an offset, adjusting its own clock frequency or clock counter

by the offset.

In more detail, a process p sends a time request message with its current local clock

counter (ta in Figure 4.26) to a process q (q reads p’s clock). Then, process q responds

with a time response message with its local clock counter and p’s original clock counter

143

Client

Server

Userspace

Userspace

Wire

Wire

ta

tb tc

td

t'a

t'b t'c

t'd

Figure 4.26: Common approach to measure offset and RTT.

Device 1 Device 2

RX PHY

TX CLK

TX PHYRX PHY

TX CLK

TX PHY

Figure 4.27: Clock domains of two peers. The same color represents the the same clock
domain.

(p reads q’s clock). Next, process p computes the offset between its local clock counter

and the remote clock counter (q) and round trip time (RTT) of the messages upon re-

ceiving the response at time td. Finally, p adjusts its clock counter or the rate of its clock

to remain close to q’s clock.

In order to improve precision, q can respond with two clock counters to remove

the internal delay of processing the time request message: One upon receiving the time

request (tb), and the other before sending the time response (tc). See Figure 4.26. For

example, in NTP, the process p computes RTT δ and offset θ, as follows [141]:

δ = (td − ta) − (tc − tb)

θ =
(tb + tc)

2
−

(ta + td)
2

Then, p applies these values to adjust its local clock.

144

Datacenter Time Protocol (DTP): Why the PHY? Our goal is to achieve

nanosecond-level precision as in GPS, with scalability in a datacenter network, and

without any network overhead. We achieve this goal by running a decentralized proto-

col in the physical layer (PHY).

DTP exploits the fact that two peers2 are already synchronized in the PHY in order

to transmit and receive bitstreams reliably and robustly. In particular, the receive path

(RX) of a peer physical layer recovers the clock from the physical medium signal gen-

erated by the transmit path (TX) of the sending peer’s PHY. As a result, although there

are two physical clocks in two network devices, they are virtually in the same circuit

(Figure 4.27; What each rectangle means is explained in Section B).

Further, a commodity switch often uses one clock oscillator to feed the sole switch-

ing chip in a switch [5], i.e. all TX paths of a switch use the same clock source. Given

a switch and N network devices connected to it, there are N + 1 physical oscillators to

synchronize, and all of them are virtually in the same circuit.

As delay errors from network jitter and a software network stack can be minimized

by running the protocol in the lowest level of a system [177], the PHY is the best place

to reduce those sources of errors. In particular, we give three reasons why clock syn-

chronization should be performed in the PHY.

First, the PHY allows accurate timestamping at sub-nanosecond scale, which can

provide enough fidelity for nanosecond-level precision. Timestamping [67, 113] in the

PHY achieves high precision by counting the number of bits between and within pack-

ets. Timestamping in the PHY relies on the clock oscillator that generates bits in the

PHY, and, as a result, it is possible to read and embed clock counters with a determinis-

tic number of clock cycles in the PHY.

2two peers are two physically connected ports via a cable.

145

Second, a software network stack is not involved in the protocol. As the physical

layer is the lowest layer of a network protocol stack, there is always a deterministic

delay between timestamping a packet and transmitting it. In addition, it is always pos-

sible to avoid buffering in a network device because protocol messages can always be

transmitted when there is no other packet to send.

Lastly, there is little to no variation in delay between two peers in the PHY. The only

element in the middle of two physically communicating devices is a wire that connects

them. As a result, when there is no packet in transit, the delay in the PHY measured

between two physically connected devices will be the time to transmit bits over the wire

(propagation delay, which is always constant with our assumptions in Section 4.5.2),

a few clock cycles required to process bits in the PHY (which can be deterministic),

and a clock domain crossing (CDC) which can add additional random delay. A CDC

is necessary for passing data between two clock domains, namely between the TX and

RX paths. Synchronization FIFOs are commonly used for a CDC. In a synchronization

FIFO, a signal from one clock domain goes through multiple flip-flops in order to avoid

metastability from the other clock domain. As a result, one random delay could be added

until the signal is stable to read.

Operating a clock synchronization protocol in the physical layer not only provides

the benefits of zero to little delay errors, but also zero overhead to a network: There

is no need for injection of packets to implement a clock synchronization protocol. A

network interface continuously generates either Ethernet frames or special characters

(Idle characters) to maintain a link connection to its peer. We can exploit those special

characters in the physical layer to transmit messages (We will discuss this in detail in

Section 4.5.3). The Ethernet standard [13] requires at least twelve idle characters (/I/)

between any two Ethernet frames regardless of link speed to allow the receiving MAC

146

layer to prepare for the next packet. As a result, if we use these idle characters to deliver

protocol messages (and revert them back to idle characters), no additional packets will

be required. Further, we can send protocol messages between every Ethernet frame

without degrading the bandwidth of Ethernet and for different Ethernet speeds.

4.5.2 Design

In this section, we present the Datacenter Time Protocol (DTP): Assumptions, protocol,

and analysis. The design goals for the protocol are the following:

• Internal synchronization with nanosecond precision.

• No network overhead: No packets are required for the synchronization protocol.

Assumptions We assume, in a 10 Gigabit Ethernet (10 GbE) network, all network

devices are driven by oscillators that run at slightly different rates due to oscillator skew,

but operate within a range defined by the IEEE 802.3 standard. The standard requires

that the clock frequency fp be in the range of [f − 0.0001 f , f + 0.0001 f]3 where f is

156.25 MHz in 10 GbE (See Section B).

We assume that there are no “two-faced” clocks [109] or Byzantine failures which

can report different clock counters to different peers.

We further assume that the length of Ethernet cables is bounded and, thus, network

propagation delay is bounded. The propagation delay of optic fiber is about 5 nanosec-

onds per meter (2/3 × the speed of light, which is 3.3 nanoseconds per meter in a vac-

uum) [91]. In particular, we assume the longest optic fiber inside a datacenter is 1000

3This is ±100 parts per million (ppm).

147

Algorithm 3 DTP inside a network port.
STATE:

gc : global counter, from Algorithm 4
lc← 0 : local counter, increments at every clock tick
d ← 0 : measured one-way delay to peer p

TRANSITION:
T0: After the link is established with p

lc← gc
Send (Init, lc)

T1: After receiving (Init, c) from p
Send (Init-Ack, c)

T2: After receiving (Init-Ack, c) from p
d ← (lc − c − α)/2

T3: After a timeout
Send (Beacon, gc)

T4: After receiving (Beacon, c) from p
lc← max(lc, c + d)

meters, and as a result the maximum propagation delay is at most 5 us. Most cables

inside a datacenter are 1 to 10 meters as they are typically used to connect rack servers

to a Top-of-Rack (ToR) switch; 5 to 50 nanoseconds would be the more common delay.

Protocol In DTP, every network port (of a network interface or a switch) has a lo-

cal counter in the physical layer that increments at every clock tick. DTP operates via

protocol messages between peer network ports: A network port sends a DTP message

timestamped with its current local counter to its peer and adjusts its local clock upon re-

ceiving a remote counter value from its peer. We show that given the bounded delay and

frequent resynchronizations, local counters of two peers can be precisely synchronized

in Section 4.5.2.

Since DTP operates and maintains local counters in the physical layer, switches

play an important role in scaling up the number of network devices synchronized by

the protocol. As a result, synchronizing across all the network ports of a switch (or a

network device with a multi-port network interface) requires an extra step: DTP needs

to synchronize the local counters of all local ports. Specifically, DTP maintains a global

148

counter that increments every clock tick, but also always picks the maximum counter

value between it and all of the local counters.

DTP follows Algorithm 3 to synchronize the local counters between two peers. The

protocol runs in two phases: INIT and BEACON phases.

INIT phase The purpose of the INIT phase is to measure the one-way delay between

two peers. The phase begins when two ports are physically connected and start com-

municating, i.e. when the link between them is established. Each peer measures the

one-way delay by measuring the time between sending an INIT message and receiving

an associated INIT-ACK message, i.e. measure RTT, then divide the measured RTT by

two (T0, T1, and T2 in Algorithm 3).

As the delay measurement is processed in the physical layer, the RTT consists of a

few clock cycles to send / receive the message, the propagation delays of the wire, and

the clock domain crossing (CDC) delays between the receive and transmit paths. Given

the clock frequency assumption, and the length of the wire, the only non-deterministic

part is the CDC. We analyze how they affect the accuracy of the measured delay in

Section 4.5.2. Note that α in Transition 2 in Algorithm 3 is there to control the non-

deterministic variance added by the CDC (See Section 4.5.2).

BEACON phase During the BEACON phase, two ports periodically exchange their local

counters for resynchronization (T3 and T4 in Algorithm 3). Due to oscillator skew, the

offset between two local counters will increase over time. A port adjusts its local counter

by selecting the maximum of the local and remote counters upon receiving a BEACON

message from its peer. Since BEACON messages are exchanged frequently, hundreds

of thousands of times a second (every few microseconds), the offset can be kept to a

minimum.

149

Algorithm 4 DTP inside a network device / switch.
STATE:

gc: global counter
{lci}: local counters

TRANSITION:
T5: at every clock tick

gc←max(gc + 1, {lci})

Scalability and multi hops Switches and multi-port network interfaces have two to

ninety-six ports in a single device that need to be synchronized within the device4. As

a result, DTP always picks the maximum of all local counters {lci} as the value for a

global counter gc (T5 in Algorithm 4). Then, each port transmits the global counter gc

in a BEACON message (T3 in Algorithm 3).

Choosing the maximum allows any counter to increase monotonically at the same

rate and allows DTP to scale: The maximum counter value propagates to all network

devices via BEACON messages, and frequent BEACON messages keep global counters

closely synchronized (Section 4.5.2).

Network dynamics When a device is turned on, the local and global counters of a net-

work device are set to zero. The global counter starts incrementing when one of the local

counters starts incrementing (i.e. a peer is connected), and continuously increments as

long as one of the local counters is incrementing. However, the global counter is set

to zero when all ports become inactive. Thus, the local and global counters of a newly

joining device are always less than those of other network devices in a DTP network.

We use a special BEACON JOIN message in order to make large adjustments to a local

counter. This message is communicated after INIT ACK message in order for peers

to agree on the maximum counter value between two local counters. When a network

device with multiple ports receives a BEACON JOIN message from one of its ports, it

4Local counters of a multi-port device will not always be the same because remote clocks run at
different rates. As a result, a multi-port device must synchronize local counters.

150

adjusts its global clock and propagates BEACON JOIN messages with its new global

counter to other ports. Similarly, if a network is partitioned and later restored, two sub-

nets will have different global counters. When the link between them is re-established,

BEACON JOIN messages allow the two subnets to agree on the same (maximum) clock

counter.

Handling failures There are mainly two types of failures that need to be handled ap-

propriately: Bit errors and faulty devices. IEEE 802.3 standard supports a Bit Error

Rate (BER) objective of 10−12 [13], which means one bit error could happen every 100

seconds in 10 GbE. However, it is possible that a corrupted bit coincides with a DTP

message and could result in a big difference between local and remote counters. As a

result, DTP ignores messages that contain remote counters off by more than eight (See

Section 4.5.2), or bit errors not in the three least significant bits (LSB). Further, in order

to prevent bit errors in LSBs, each message could include a parity bit that is computed

using three LSBs. As BEACON messages are communicated very frequently, ignoring

messages with bit errors does not affect the precision.

Similarly, if one node makes too many jumps (i.e. adjusting local counters upon

receiving BEACON messages) in a short period of time, it assumes the connected peer

is faulty. Given the latency, the interval of BEACON messages, and maximum oscillator

skew between two peers, one can estimate the maximum offset between two clocks and

the maximum number of jumps. If a port receives a remote counter outside the estimated

offset too often, it considers the peer to be faulty and stops synchronizing with the faulty

device.

Analysis As discussed in Section 4.5.1, the precision of clock synchronization is de-

termined by oscillator skew, interval between resynchronizations, and errors in reading

151

remote clocks [54, 77, 101]. In this section, we analyze DTP to understand its precision

in regards to the above factors. In particular, we analyze the bounds on precision (clock

offsets) and show the following:

• Bound of two tick errors due to measuring the one-way delay (OWD) during the

INIT phase.

• Bound of two tick errors due to the BEACON interval. The offset of two synchro-

nized peers can be up to two clock ticks if the interval of BEACON messages is

less than 5000 ticks.

• As a result, the offset of two peers is bound by four clock ticks or 4T where T is

6.4ns. In 10 GbE the offset of two peers is bound by 25.6ns.

• Multi hop precision. As each link can add up to four tick errors, the precision

is bounded by 4T D where 4 is the bound for the clock offset between directly

connected peers, T is the clock period and D is the longest distance in terms of

the number of hops.

For simplicity, we use two peers p and q, and use Tp (fp) and Tq (fq) to denote the

period (frequency) of p and q’s oscillator. We assume for analysis p’s oscillator runs

faster than q’s oscillator, i.e. Tp < Tq (or fp > fq).

Two tick errors due to OWD. In DTP, the one-way delay (OWD) between two peers,

measured during the INIT phase, is assumed to be stable, constant, and symmetric in

both directions. In practice, however, the delay can be measured differently depend-

ing on when it is measured due to oscillator skew and how the synchronization FIFO

between the receive and transmit paths interact. Further, the OWD of one path (from

p to q) and that of the other (from q to p) might not be symmetric due to the same

reasons.We show that DTP still works with very good precision despite any errors intro-

duced by measuring the OWD.

152

Suppose p sends an INIT message to q at time t, and the delay between p and q

is d clock cycles. Given the assumption that the length of cables is bounded, and that

oscillator skew is bounded, the delay is d cycles for both directions. The message arrives

at q at t+Tpd (i.e. the elapsed time is Tpd). Since the message can arrive in the middle of

a clock cycle of q’s clock, it can wait up to Tq before q processes it. Further, passing data

from the receipt path to the transmit path requires a synchronization FIFO between two

clock domains, which can add one more cycle randomly, i.e. the message could spend

an additional Tq before it is received. Then, the INIT-ACK message from q takes Tqd

time to arrive at p, and it could wait up to 2Tp before p processes it. As a result, it takes

up to a total of Tpd + 2Tq + Tqd + 2Tp time to receive the INIT-ACK message after

sending an INIT message. Thus, the measured OWD, dp, at p is,

dp ≤ b
Tpd + 2Tq + Tqd + 2Tp

Tp
c/2 = d + 2

In other words, dp could be one of d, d + 1, or d + 2 clock cycles depending on when it

is measured. As q’s clock is slower than p, the clock counter of q cannot be larger than

p. However, if the measured OWD, dp, is larger than the actual OWD, d, then p will

think q is faster and adjust its offset more frequently than necessary (See Transition T4

in Algorithm 3). This, in consequence, causes the global counter of the network to go

faster than necessary. As a result, α in T2 of Algorithm 3 is introduced.

α = 3 allows dp to always be less than d. In particular, dp will be d−1 or d; however,

dq will be d − 2 or d − 1. Fortunately, a measured delay of d − 2 at q does not make the

global counter go faster, but it can increase the offset between p and q to be two clock

ticks most of the time, which will result in q adjusting its counter by one only when the

actual offset is two.

Two tick errors due to the BEACON interval. The BEACON interval, period of resyn-

153

chronization, plays a significant role in bounding the precision. We show that a BEACON

interval of less than 5000 clock ticks can bound the clock offset to two ticks between

peers.

Let Cp(X) be a clock that returns a real time t at which cp(t) changes to X. Note that

the clock is a discrete function. Then, cp(t) = X means, the value of the clock is stably

X at least after t − Tp, i.e. t − Tp < Cp(X) ≤ t.

Suppose p and q are synchronized at time t1, i.e. cp(t1) = cq(t1) = X . Also suppose

cp(t2) = X + ∆P, and cq(t2) = X + ∆Q at time t2, where ∆P is the difference between two

counter values of clock p at time t1 and t2. Then,

t2 − Tp < Cp(X + ∆P) = Cp(X) + ∆PTp ≤ t2

t2 − Tq < Cq(X + ∆Q) = Cq(X) + ∆QTq ≤ t2

Then, the offset between two clocks at t2 is,

∆t(fp − fq) − 2 < ∆P − ∆Q < ∆t(fp − fq) + 2

where ∆t = t2 − t1.

Since the maximum frequency of a NIC clock oscillator is 1.0001 f , and the mini-

mum frequency is 0.9999 f , ∆t(fp − fq) is always smaller than 1 if ∆t is less than 32 us.

As a result, ∆P − ∆Q can be always less than or equal to 2, if the interval of resynchro-

nization (∆t) is less than 32 us (≈ 5000 ticks). Considering the maximum latency of the

cable is less than 5 us (≈ 800 ticks), a beacon interval less than 25 us (≈ 4000 ticks) is

sufficient for any two peers to synchronize with 12.8 ns (= 2 ticks) precision.

Multi hop Precision. Note that DTP always picks the maximum clock counter of all

nodes as the global counter. All clocks will always be synchronized to the fastest clock

154

in the network, and the global counter always increases monotonically. Then, the maxi-

mum offset between any two clocks in a network is between the fastest and the slowest.

As discussed above, any link between them can add at most two offset errors from the

measured delay and two offset errors from BEACON interval. Therefore, the maximum

offset within a DTP-enabled network is bounded by 4T D where D is the longest dis-

tance between any two nodes in a network in terms of number of hops, and T is the

period of the clock as defined in the IEEE 802.3 standard (≈ 6.4ns).

4.5.3 Implementation

DTP-enabled PHY The control logic of DTP in a network port consists of Algo-

rithm 3 from Section 4.5.2 and a local counter. The local counter is a 106-bit integer (2

× 53 bits) that increments at every clock tick (6.4 ns = 1/156.25 MHz), or is adjusted

based on received BEACON messages. Note that the same oscillator drives all modules

in the PCS sublayer on the transmit path and the control logic that increments the local

counter. i.e. they are in the same clock domain. As a result, the DTP sublayer can easily

insert the local clock counter into a protocol message with no delay.

The DTP-enabled PHY is illustrated in Figure 4.28. Figure 4.28 is exactly the same

as the PCS from the standard, except that Figure 4.28 has DTP control, TX DTP, and RX

DTP sublayers shaded in gray. Specifically, on the transmit path, the TX DTP sublayer

inserts protocol messages, while, on the receive path, the RX DTP sublayer processes

incoming protocol messages and forwards them to the control logic through a synchro-

nization FIFO. After the RX DTP sublayer receives and uses a DTP protocol message

from the Control block (/E/), it replaces the DTP message with idle characters (/I/s,

all 0’s) as required by the standard such that higher network layers do not know about the

155

Media Access Control (MAC)

Reconciliation Sublayer (RS)

TX 32bit RX 32bitXGMII 156.25 MHz

Physical Coding Sublayer (PCS)

Physical Medium Attachment (PMA)

Physical Medium Dependent (PMD)

TX 16bit RX 16bitXSBI 644.53125MHz

Figure 4.28: Low layers of a 10 GbE network stack. Grayed rectangles are DTP sublay-
ers, and the circle represents a synchronization FIFO.

Global Counter = Max(LC0, LC1, LC2, LC3)

Port 0 Port 1 Port 2 Port 3

Local

Counter

Remote

Counter

Global Counter

Figure 4.29: DTP enabled four-port device.

existence of the DTP sublayer. Lastly, when an Ethernet frame is being processed in the

PCS sublayer in general, DTP simply forwards blocks of the Ethernet frame unaltered

between the PCS sublayers.

156

DTP-enabled network device A DTP-enabled device (Figure 4.29) can be imple-

mented with additional logic on top of the DTP-enabled ports. The logic maintains the

106-bit global counter as shown in Algorithm 4, which computes the maximum of the

local counters of all ports in the device. The computation can be optimized with a tree-

structured circuit to reduce latency, and can be performed in a deterministic number

of cycles. When a switch port tries to send a BEACON message, it inserts the global

counter into the message, instead of the local counter. Consequently, all switch ports are

synchronized to the same global counter value.

Protocol messages DTP uses /I/sin the /E/ control block to deliver protocol mes-

sages. There are eight seven-bit /I/sin an /E/ control block, and, as a result, 56 bits

total are available for a DTP protocol message per /E/ control block. Modifying con-

trol blocks to deliver DTP messages does not affect the physics of a network interface

since the bits are scrambled to maintain DC balance before sending on the wire (See the

scrambler/descrambler in Figure B.1). Moreover, using /E/ blocks do not affect higher

layers since DTP replaces /E/ blocks with required /I/s(zeros) upon processing them.

A DTP message consists of a three-bit message type, and a 53-bit payload. There

are five different message types in DTP: INIT, INIT-ACK, BEACON, BEACON-JOIN,

and BEACON-MSB. As a result, three bits are sufficient to encode all possible message

types. The payload of a DTP message contains the local (global) counter of the sender.

Since the local counter is a 106-bit integer and there are only 53 bits available in the

payload, each DTP message carries the 53 least significant bits of the counter. In 10

GbE, a clock counter increments at every 6.4 ns (=1/156.25MHz), and it takes about

667 days to overflow 53 bits. DTP occasionally transmits the 53 most significant bits in

a BEACON-MSB message in order to prevent overflow.

157

S4 S5 S6 S7 S8 S9 S10 S11

S1

S0

S2 S3

IBM Switch

Timeserver

DTP-NIC

Mellanox

Figure 4.30: Evaluation Setup.

As mentioned in Section B, it is always possible to transmit one protocol message

after/before an Ethernet frame is transmitted. This means that when the link is fully

saturated with Ethernet frames DTP can send a BEACONmessage every 200 clock cycles

(≈ 1280 ns) for MTU-sized (1522B) frames5 and 1200 clock cycles (≈ 7680 ns) at

worst for jumbo-sized (≈9kB) frames. The PHY requires about 191 66-bit blocks and

1,129 66-bit blocks to transmit a MTU-sized or jumbo-sized frame, respectively. This

is more than sufficient to precisely synchronize clocks as analyzed in Section 4.5.2 and

evaluated in Section 4.5.4. Further, DTP communicates frequently when there are no

Ethernet frames, e.g every 200 clock cycles, or 1280 ns: The PHY continuously sends

/E/ when there are no Ethernet frames to send.

4.5.4 Evaluation

In this section, we attempt to answer following questions:

• Precision: In Section 4.5.2, we showed that the precision of DTP is bounded by

4T D where D is the longest distance between any two nodes in terms of number of

hops. In this section, we demonstrate and measure that precision is indeed within

the 4T D bound via a prototype and deployed system.
5It includes 8-byte preambles, an Ethernet header, 1500-byte payload and a checksum value.

158

• Scalability: We demonstrate that DTP scales as the number of hops of a network

increases.

Further, we measured the precision of accessing DTP from software and compared

DTP against PTP.

Evaluation Setup For the DTP prototype and deployment, we used programmable

NICs plugged into commodity servers: We used DE5-Net boards from Terasaic [191].

A DE5-Net board is an FPGA development board with an Altera Stratix V [116] and

four Small Form-factor Pluggable (SFP+) modules. We implemented the DTP sublayer

and the 10 GbE PHY using the Bluespec language [147] and Connectal framework [96].

More detailed description of hardware implementation can be found in Appendix D.3.

We deployed DE5-Net boards on a cluster of twelve Dell R720 servers. Each server was

equipped with two Xeon E5-2690 processors and 96 GB of memory. All servers were

in the same rack in a datacenter. The temperature of the datacenter was stable and cool.

We created a DTP network as shown in Figure 4.30: A tree topology with the height

of two, i.e. the maximum number of hops between any two leaf servers was four. DE5-

Net boards of the root node, S 0, and intermediate nodes, S 1 ∼ S 3, were configured as

DTP switches, and those of the leaves (S 4 ∼ S 11) were configured as DTP NICs. We

used 10-meter Cisco copper twinax cables to a DE5-Net board’s SFP+ modules. The

measured one-way delay (OWD) between any two DTP devices was 43 to 45 cycles (≈

280 ns).

We also created a PTP network with the same servers as shown in Figure 4.30 (PTP

used Mellanox NICs). Each Mellanox NIC was a Mellanox ConnectX-3 MCX312A

10G NIC. The Mellanox NICs supported hardware timestamping for incoming and out-

going packets which was crucial for achieving high precision in PTP. A VelaSync time

159

-25.6

-12.8

 0

 12.8

 25.6

0 3 6

-4

-2

 0

 2

 4

O
ff
s
e
t
(n

s
)

O
ff
s
e
t
(t

ic
k
s
)

Time (mins)

s1-s4
s1-s5
s1-s0

s2-s7
s2-s8
s2-s0

s3-s10
s3-s11
s3-s0

(a) DTP: BEACON interval = 200.
Heavily loaded with MTU pack-
ets.

-25.6

-12.8

 0

 12.8

 25.6

0 3 6

-4

-2

 0

 2

 4

O
ff
s
e
t
(n

s
)

O
ff
s
e
t
(t

ic
k
s
)

Time (mins)

s1-s4
s1-s5
s1-s0

s2-s7
s2-s8
s2-s0

s3-s10
s3-s11
s3-s0

(b) DTP: BEACON interval =
1200. Heavily loaded with
Jumbo packets.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-2 -1 0 1 2 3 4

P
D

F

OWD - delay (ticks)

s3-s9
s3-s10
s3-s11
s3-s0

(c) DTP: Offset distribution from
S3. (BEACON interval = 1200 cy-
cles)

-640

-320

0

320

640

10 25 40

O
ff
s
e
t
(n

a
n
o
s
e
c
o
n
d
)

Time (mins)

s4
s5

s6
s7

s8
s11

(d) PTP: Idle network

-75

-50

-25

 0

 25

 50

 75

10 25 40

O
ff
s
e
t
(m

ic
ro

s
e
c
o
n
d
)

Time (mins)

s4
s5
s6

s7
s8

s11

(e) PTP: Medium loaded

-200

-100

 0

 100

 200

10 25 40

O
ff
s
e
t
(m

ic
ro

s
e
c
o
n
d
)

Time (mins)

s4
s5
s6

s7
s8

s11

(f) PTP: Heavily loaded

Figure 4.31: Precision of DTP and PTP. A tick is 6.4 nanoseconds.

server from Spectracom was deployed as a PTP grand-master clock. An IBM G8264

cut-through switch was used to connect the servers including the time server. As a re-

sult, the number of hops between any two servers in the PTP network was always two.

Cut-through switches are known to work well in PTP networks [209]. We deployed a

commercial PTP solution (Timekeeper [22]) in order to achieve the best precision in 10

Gigabit Ethernet. Note that the IBM switch was configured as a transparent clock.

The time server multicasted PTP timing information every second, i.e. the syn-

chronization rate was once per second, which was the recommended sync rate by the

provider. Note that each sync message was followed by Follow Up and Announce

messages. Further, we enabled PTP UNICAST capability, which allowed the server to

send unicast sync messages to individual PTP clients once per second in addition to

multicast syncmessages. In our configuration, a client sent two Delay Reqmessages

per 1.5 seconds.

Methodology Measuring offsets at nanosecond scale is a very challenging problem.

One approach is to let hardware generate pulse per second (PPS) signals and compare

them using an oscilloscope. Another approach, which we use, is to measure the preci-

160

-640

-320

-102.4
 0

 102.4

 320

 640

10 25 40
-100

-50

-16
 0
 16

 50

 100

O
ff
s
e
t
(n

s
)

O
ff
s
e
t
(t

ic
k
s
)

Time (mins)

s4
s5

s7
s8

s9
s11

(a) Before smoothing: Raw
offsetsw

-640

-320

-102.4
 0

 102.4

 320

 640

10 25 40
-100

-50

-16
 0
 16

 50

 100

O
ff
s
e
t
(n

s
)

O
ff
s
e
t
(t

ic
k
s
)

Time (mins)

s4
s5

s7
s8

s9
s11

-4
-2
 0
 2

T
ic

k
s

(b) After smoothing: Window
size = 10

Figure 4.32: Precision of DTP daemon.

sion directly in the PHY. Since we are mainly interested in the clock counters of network

devices, we developed a logging mechanism in the PHY.

Each leaf node generates and sends a 106-bit log message twice per second to its

peer, a DTP switch. DTP switches also generate log messages between each other twice

per second. A log message contains a 53-bit estimate of the DTP counter generated by

the DTP daemon, t0, which is then timestamped in the DTP layer with the lower 53-bits

of the global counter (or the local counter if it is a NIC). The 53-bit timestamp, t1, is

appended to the original message generated by the DTP daemon, and, as a result, a 106-

bit message is generated by the sender. Upon arriving at an intermediate DTP switch,

the log message is timestamped again, t2, in the DTP layer with the receiver’s global

counter. Then, the original 53-bit log message (t0) and two timestamps (t1 from the

sender and t2 from the receiver) are delivered to a DTP daemon running on the receiver.

By computing offsethw = t2 − t1 − OWD where OWD is the one-way delay measured

in the INIT phase, we can estimate the precision between two peers. Similarly, by

computing offsetsw = t1 − t0, we can estimate the precision of a DTP daemon. Note

that offsethw includes the non-deterministic variance from the synchronization FIFO and

offsetsw includes the non-deterministic variance from the PCIe bus. We can accurately

161

approximate both the offsethw and offsetsw with this method.

For PTP, the Timekeeper provides a tool that reports measured offsets between the

time server and all PTP clients. Note that our Mellanox NICs have PTP hardware clocks

(PHC). For a fair comparison against DTP that synchronizes clocks of NICs, we use the

precision numbers measured from a PHC. Also, note that a Mellanox NIC timestamps

PTP packets in the NIC for both incoming and outgoing packets.

The PTP network was mostly idle except when we introduced network congestion.

Since PTP uses UDP datagrams for time synchronization, the precision of PTP can

vary relying on network workloads. As a result, we introduced network workloads be-

tween servers using iperf [192]. Each server occasionally generated MTU-sized UDP

packets destined for other servers so that PTP messages could be dropped or arbitrarily

delayed.

To measure how DTP responds to varying network conditions, we used the same

heavy load that we used for PTP and also changed the BEACON interval during ex-

periments from 200 to 1200 cycles, which changed the Ethernet frame size from 1.5kB

to 9kB. Recall that when a link is fully saturated with MTU-sized (Jumbo) packets, the

minimum BEACON interval possible is 200 (1200) cycles.

Results Figure 4.31 and 4.32 show the results: We measured precision of DTP in Fig-

ure 4.31a-c, PTP in Figure 4.31d-f, and the DTP daemon in Figure 4.32. For all results,

we continuously synchronized clocks and measured the precision (clock offsets) over at

least a two-day period in Figure 4.31 and at least a few-hour period in Figure 4.32.

Figures 4.31a-b demonstrate that the clock offsets between any two directly con-

nected nodes in DTP never differed by more than four clock ticks; i.e. offsets never

162

differed by more than 25.6 nanoseconds (4T D = 4 × 6.4 × 1 = 25.6): Figures 4.31a

and b show three minutes out of a two-day measurement period and Figure 4.31c shows

the distribution of the measured offsets with node S3 for the entire two-day period. The

network was always under heavy load and we varied the Ethernet frame size by

varying the BEACON interval between 200 cycles in Figure 4.31a and 1200 cycles in

Figure 4.31b. DTP performed similarly under idle and medium load. Since we

measured all pairs of nodes and no offset was ever greater than four, the results support

that precision was bounded by 4T D for nodes D hops away from each other. Figure 4.32

shows the precision of accessing a DTP counter via a DTP daemon: Figure 4.32a shows

the raw offsetsw and Figure 4.32b shows the offsetsw after applying a moving average al-

gorithm with a window size of 10. We applied the moving average algorithm to smooth

the effect of the non-determinism from the PCIe bus, which is shown as occasional

spikes. The offset between a DTP daemon in software and the DTP counter in hardware

was usually no more than 16 clock ticks (≈ 102.4ns) before smoothing, and was usually

no more than 4 clock ticks (≈ 25.6ns) after smoothing.

Figures 4.31d-f show the measured clock offsets between each node and the grand-

master time server using PTP. Each figure shows minutes to hours of a multi-day mea-

surement period, enough to illustrate the precision trends. We varied the load of the

network from idle (Figure 4.31d), to medium load where five nodes transmitted

and received at 4 Gbps (Figure 4.31e), to heavy load where the receive and transmit

paths of all links except S11 were fully saturated at 9 Gbps (Figure 4.31f). When the net-

work was idle, Figure 4.31d showed that PTP often provided hundreds of nanoseconds

of precision, which matches literature [10, 25]. When the network was under medium

load, Figure 4.31e showed the offsets of S 4 ∼ S 8 became unstable and reached up

to 50 microseconds. Finally, when the network was under heavy load, Figure 4.31f

showed that the maximum offset degraded to hundreds of microseconds. Note that we

163

measured, but do not report the numbers from the PTP daemon, ptpd, because the pre-

cision with the daemon was the same as the precision with the hardware clock, PHC.

Also, note that all reported PTP measurements include smoothing and filtering algo-

rithms.

There are multiple takeaways from these results.

1. DTP more tightly synchronized clocks than PTP.

2. The precision of DTP was not affected by network workloads. The maximum

offset observed in DTP did not change either when load or Ethernet frame size

(the BEACON interval) changed. PTP, on the other hand, was greatly affected

by network workloads and the precision varied from hundreds of nanoseconds to

hundreds of microseconds depending on the network load.

3. DTP scales. The precision of DTP only depends on the number of hops between

any two nodes in the network. The results show that precision (clock offsets) were

always bounded by 4T D nanoseconds.

4. DTP daemons can access DTP counters with tens of nanosecond precision.

5. DTP synchronizes clocks in a short period of time, within two BEACON intervals.

PTP, however, took about 10 minutes for a client to have an offset below one

microsecond. This was likely because PTP needs history to apply filtering and

smoothing effectively. We omitted these results due to limited space.

6. PTP’s performance was dependent upon network conditions, configuration such

as transparent clocks, and implementation.

164

4.6 Summary

In this chapter, we presented SoNIC which allows users to access the physical layer in

realtime from software. SoNIC can generate, receive, manipulate and forward 10 GbE

bitstreams at line-rate from software. Further, SoNIC gives systems programmers un-

precedented precision for network measurements and research. At its heart, SoNIC uti-

lizes commodity-off-the-shelf multi-core processors to implement part of the physical

layer in software and employs an FPGA board to transmit optical signal over the wire.

As a result, SoNIC allows cross-network-layer research explorations by systems pro-

grammers.

We presented two applications enabled by SoNIC: MinProbe and DTP. MinProbe is

a high-fidelity, minimal-cost and userspace accessible network measurement approach

that is able to accurately measure available bandwidth in 10 GbE networks. We found

that MinProbe performs well even and the estimation is typically within 0.4 Gbps of the

true value in a 10 GbE network. DTP tightly synchronizes clocks with zero network

overhead (no Ethernet packets). It exploits the fundamental fact that two physically

connected devices are already synchronized to transmit and receive bitstreams. DTP

can synchronize clocks of network components at tens of nanoseconds of precision,

can scale up to synchronize an entire datacenter network, and can be accessed from

software with usually better than twenty five nanosecond precision. As a result, the

end-to-end precision is the precision from DTP in the network (i.e. 25.6 nanoseconds

for directly connected nodes and 153.6 nanoseconds for a datacenter with six hops) plus

fifty nanosecond precision from software.

165

CHAPTER 5

RELATED WORK

5.1 Programming Network Elements

5.1.1 Hardware

Programmable network hardware allows users to experiment with novel network sys-

tem architectures. Previous studies have shown that reconfigurable NICs [200] can be

used to explore new I/O virtualization techniques in VMMs. Those who are conducting

research on new network protocols and intrusion detection can use NetFPGA [128,211]

to experiment with FPGA-based router and switches [34, 47, 144, 210].

Furthermore, users can employ specialized NICs that are programmable and sup-

port P4 language [38] which is a dataplane programming language. In P4, forwarding

elements perform user-defined actions such as modifying, discarding, or forwarding

packets. Netronome’s FlowNIC [145] and Xilinx’s SDNet [203] support P4. While pro-

grammable NICs allow users to access the layer 2 and above, SoNIC allows users to

access the PHY. In other words, SoNIC allows users to access the entire network stack

in software.

5.1.2 Software

Although SoNIC is orthogonal to software routers, software routers are important be-

cause they share common techniques. SoNIC preallocates buffers to reduce memory

overhead [79, 174], polls huge chunks of data from hardware to minimize interrupt

166

overhead [63,79], packs packets in a fashion that resembles batching to improve perfor-

mance [63,79,135,174]. Software routers normally focus on scalability, and, hence, they

exploit multi-core processors and multi-queue supports from NICs to distribute packets

to different cores to process. On the other hand, SoNIC pipelines multiple CPUs to

handle continuous bitstreams.

5.1.3 Language

P4 Reflecting the significant interest in P4 as a development platform, several efforts

are underway to implement P4 compilers and tools. Our micro-benchmarks can be

compared to those of PISCES [179], which is a software hypervisor switch that extends

Open vSwitch [152] with a protocol-independent design. The Open-NFP [151] organi-

zation provides a set of tools to develop network function processing logic, including a

P4 compiler that targets 10, 40 and 100GbE Intelligent Server Adapters (ISAs) manu-

factured by Netronome. These devices are network processing units (NPUs), in contrast

to P4FPGA, which targets FPGAs. The Open-NFP compiler currently does not sup-

port register-related operations and cannot parse header fields that are larger than 32

bits. Users implement actions in a MicroC code that is external to the P4 program.

P4c [157] is a retargetable compiler for the P4 language that generates a high perfor-

mance network switch code in C, linking against DPDK [64] libraries. DPDK provides

a set of user-space libraries that bypass the Linux kernel. P4c does not yet support P4

applications that require register uses to store state. P4.org provides a reference com-

piler [158] that generates a software target, can be executed in a simulated environment

(i.e. Mininet [142] and P4 Behavioral Model switch [156]). P4FPGA shares the same

compiler front-end, but it provides a different back-end.

167

A P4 compiler backend targeting a programmable ASIC [90] must deal with re-

source constraints. The major challenge arises from mapping logical lookup tables to

physical tables on an ASIC. In contrast, FPGAs can directly map logical tables into the

physical substrate without the complexity of logical-to-physical table mapping, thanks

to the flexible and programmable nature of FPGAs.

Perhaps the most closely related effort is Xilinx’s SDNet [203]. SDNet compiles

programs from the high-level PX [41] language to a data plane implementation on a

Xilinx FPGA target at selectable line rates that range from 1G to 100G. A Xilinx Labs

prototype P4 compiler works by translating from P4 to PX, and then it uses SDNet

to map this PX to a target FPGA. The compiler implementation is not yet publicly

available, and so we cannot comment on how the design or architecture compares to

P4FPGA.

High Level Synthesis. FPGAs are typically programmed using hardware description

languages such as Verilog of VHDL. Many software-developers find working with these

languages challenging because they expose low-level hardware details to the program-

mer.

Consequently, there has been significant research in high-level synthesis and

programming language support for FPGAs. Some well-known examples include

CASH [44], which compiles C to FPGAs; Kiwi [180], which transforms .NET progr-

rams into FPGA circuits; and Xilinx’s AccelDSP [27], which performs synthesis from

MATLAB code.

P4FPGA notably relies on Bluespec [147] as a target language, and it re-uses the

associated compiler and libraries to provide platform independence. As already men-

tioned, P4FPGA uses Connectal [96] libraries, which also are written in Bluespec, for

168

common hardware features.

5.2 Network Applications

5.2.1 Consensus Protocol

Prior work [56] proposed that consensus logic could be moved to forwarding devices

using two approaches: (i) implementing Paxos in switches; and (ii) using a modified

protocol, named NetPaxos, that makes assumption about packet ordering in order to

solve consensus without switch-based computation. This section builds on that work

by making the implementation of a switch-based Paxos concrete. István et al. [83]

have also proposed implementing consensus logic in hardware, although they focus on

Zookeeper’s atomic broadcast written in Verilog.

Dataplane programming languages. Several recent projects have proposed domain-

specific languages for dataplane programming. Notable examples include Huawei’s

POF [186], Xilinx’s PX [41], and the P4 [39] language used throughout this section.

We focus on P4 because there is a growing community of active users, and because it

is relatively more mature than the other choices. However, the ideas for implementing

Paxos in switches should generalize to other languages.

Replication protocols. Research on replication protocols for high availability is quite

mature. Existing approaches for replication-transparent protocols, notably protocols

that implement some form of strong consistency (e.g. linearizability, serializability),

can be roughly divided into three classes [52]: (a) state-machine replication [104, 178],

(b) primary-backup replication [150], and (c) deferred update replication [52].

169

Despite the long history of research on replication protocols, there exist very few

examples of protocols that leverage network behavior to improve performance. We are

aware of one exception: systems that exploit spontaneous message ordering, [107, 162,

163]. These systems check whether messages reach their destination in order; they do

not assume that order must be always constructed by the protocol or incur additional

message steps to achieve it. This section implements a standard Paxos protocol that

does not make ordering assumptions.

5.2.2 Timestamping

The importance of timestamping has long been established in the network measurement

community. Prior work either does not provide sufficiently precise timestamping, or re-

quires special devices. Packet stamping in user-space or kernel suffers from the impre-

cision that is introduced by the OS layer [55]. Many commodity NICs support hardware

timestamping that has levels of accuracy that range from nanoseconds [6, 7, 17] to hun-

dreds of nanoseconds [18]. Furthermore, NICs can be combined with a GPS receiver or

PTP-capability to use reference time for timestamping.

Timestamping in hardware either requires offloading the network stack to a custom

processor [207] or network interface cards; the latter provide hardware timestamping

capability via an external clock source [6, 17], which makes the device hard to pro-

gram and inconvenient to use in a data center environment. Many commodity net-

work interface cards support hardware timestamping. Data acquisition and generation

(DAG) cards [6] additionally offer globally synchronized clocks among multiple de-

vices, whereas SoNIC only supports delta timestamping.

Although BiFocals [67] is able to provide an exact timestamping, its limitations have

170

prevented it from being a portable and realtime tool. BiFocals can store and analyze

only a few milliseconds worth of a bitstream at a time due to the small memory of the

oscilloscope. Furthermore, it requires thousands of CPU hours to convert raw optic

waveforms to packets. Finally, the physics equipment used by BiFocals is expensive

and is not easily portable. Its limitations motivated us to design SoNIC to achieve the

realtime exact precision timestamping. Unfortunately, both BiFocals and SoNIC only

support delta timestamping.

5.2.3 Bandwidth Estimaton

Prior work in MAD [182], MGRP [160] and Periscope [80] provided a thin measure-

ment layer (via userspace daemon and kernel module) for network measurement in a

shared environment. These works complement MinProbe , which is applicable in a

shared environment. We also advance the available bandwidth estimation to 10Gbps;

this contrasts with most prior work, which only operated in 1Gbps or less.

We use an algorithm similar to Pathload [84] and Pathchirp [173] to estimate avail-

able bandwidth. There are many related works on both the theoretical and practical

aspects of available bandwidth estimation [30, 84, 88, 123, 125, 129, 170, 173, 183, 185].

Our work contributes to the practice of available bandwidth estimation in high speed net-

works (10Gbps). We find that existing probing parameterizations such as probe trains

are sound and applicable in high-speed networks when they are supported by the appro-

priate instrumentation. Furthermore, [85, 197] mentioned that burstiness of the cross

traffic can negatively affect the accuracy of estimation. Although bursty traffic does in-

troduce noise into the measurement data, we find that the noise can be filtered out using

simple statistical processing, such as the moving average.

171

Middleboxes are popular building blocks for current network architecture [159],

when operating as a middlebox, is similar to software routers in the sense that Min-

Probe consists of a data forwarding path and a programmable flow table. Unlike soft-

ware routers, which typically focus on high throughput, MinProbe has the capability to

precisely control the distance between packets; this capability is absent in most existing

software routers. With regards to system design, ICIM [133] has proposed an inline

network measurement mechanism that is similar to our middlebox approach. However,

in contrast to ICI, which has only simulated their proposal, we implemented a proto-

type and performed experiment in real network. Others have investigated the effect of

interrupt coalescence [171] and the memory I/O subsystem [89], which are orthogonal

to our efforts. MinProbe , albeit a software tool, avoids completely the noise of OS and

the network stack by operating at the physical layer of the network stack.

Another area of related work is precise traffic pacing and precise packet timestamp-

ing. These are useful system building blocks for designing a high-fidelity network mea-

surement platform. Traditionally, traffic pacing [31] is used to smooth out the burstiness

of the traffic in order to improve system performance. In MinProbe , we use traffic

pacing in the opposite way to generate micro-burst of traffic to serve as probe packets.

Precise timestamping has been used widely in passive network monitoring. Typically,

this is achieved through the use of a dedicated hardware platform, such as Endace Data

Acquisition and a Generation (DAG) card [6]. With MinProbe , we achieve the same

nanosecond timestamping precision, and we are able to use the precise timestamp for

active network measurement, which the traditional hardware platform cannot achieve.

172

5.2.4 Clock Synchronization

Clock synchronization has been extensively studied. Next, we briefly discuss clock

synchronization protocols.

Because NTP normally does not provide precise clock synchronization in a local

area network (LAN), much of the literature has focused on improving NTP without

extra hardware. One line of work was to use TSC instructions to implement precise

software clocks called TSCclock, which later were called RADclock [58, 161, 195].

TSC clock was designed to replace ntpd and ptpd (daemons that run NTP or PTP),

and to provide sub-microsecond precision without any extra hardware support. Other

software clocks include Server Time Protocol (STP) [149], Coordinated Cluster Time

(CCT) [68], AP2P [181], and skewless clock synchronization [132], all of which provide

microsecond precision.

The implemention of clock synchronization in hardware has been demonstrated by

Fiber Channel (FC) [8] and discussed by Kopetz and Ochsenreiter [101]. FC embeds

protocol messages into interpacket gaps that are similar to DTP. However, FC is not a

decentralized protocol and the network fabric simply forwards protocol messages be-

tween a server and a client using physical layer encodings. Consequently, it does not

eliminate non-deterministic delays which delivering protocol messages.

Synchronous optical networks (SONET/SDH) are a standard that transmits multiple

bitstreams (such as Voice, Ethernet, TCP/IP) over an optical fiber. In order to reduce the

buffering of data between network elements, SONET requires precise frequency syn-

chronization (i.e. syntonization). An atomic clock is commonly deployed as a Primary

Reference Clock (PRC) and other network elements are synchronized to it either by ex-

ternal timing signals or by recovering clock signals from incoming data. DTP does not

173

synchronize the frequency of clocks, but the values of clock counters.

Synchronous Ethernet (SyncE) [23] was introduced to enable reliable data transfer

between synchronous networks (e.g. SONET/SDH) and asynchronous networks (e.g.

Ethernet). Like SONET, it synchronizes the frequency of nodes in a network, rather than

clocks (i.e. syntonization). It aims to provide a synchronization signal to all Ethernet

network devices. The goal is to use the recovered clock from the receive (RX) path to

drive the transmit (TX) path so that both the RX and TX paths run at the same clock

frequency. As a result, each Ethernet device uses a phase locked loop to regenerate

the synchronous signal. SyncE does not synchronize clocks in a network, and so PTP

is often employed along with SyncE to provide tight clock synchronization. One such

example is White Rabbit, which we discuss below.

White Rabbit [110,121,143] has by far the best precision in packet-based networks.

The goal of White Rabbit (WR) [143] is to synchronize up to 1000 nodes with sub-

nanosecond precision. It uses SyncE to syntonize the frequency of clocks of network

devices, and WR-enabled PTP [110] to embed the phase difference between a master

and a slave into PTP packets. WR demonstrated that the precision of a non-disturbed

system was 0.517ns [121]. WR also requires WR-enabled switches, and synchronizes

slaves that are up to four-hops apart from the timeserver. WR works on a network

that has a tree topology and a limited number of levels and servers. Furthermore, it

currently supports 1 Gigabit Ethernet only; because it uses PTP packets, it is not clear

how WR behaves under heavy network loads. DTP does not rely on any specific network

topology, and it can be extended to protocols with higher speeds.

Similarly, BroadSync [42] and ChinaMobile [118] combine SyncE and PTP to pro-

vide hundreds-of-nanosecond precision. The Data Over Cable Service Interface Speci-

fication (DOCSIS) is a frequency synchronized network that is designed to time divide

174

data transfers between multiple cable modems (CM) and a cable modem termination

system (CMTS). The DOCSIS time protocol [51] extends DOCSIS to synchronize time

by approximating the internal delay from the PHY and asymmetrical path delays be-

tween a reference CM and the CMTS. We expect that combining DTP with frequency

synchronization, or SyncE, will further improve the precision of DTP to sub-nanosecond

precision as it becomes possible to minimize or remove the variance of the synchroniza-

tion FIFO between the DTP TX and RX paths.

175

CHAPTER 6

FUTURE DIRECTION

Programmable network dataplanes enrich the capabilities of networks by allowing users

to deploy customized packet processing algorithms. In this dissertation, we have ex-

plored two aspects of the programmable dataplane. First we studied how to design a

programmable packet processing pipeline to enable deployment of custom packet pro-

cessing algorithms. Second, we researched how to design a programmable PHY to users

to improve network visibility and measurement. We demonstrated an instance of each

of the approaches, resulting in two systems: P4FPGA and SoNIC. We expect more sys-

tems to harness the capabilities of the work described in this dissertation. In this chapter,

we review and discuss future research directions.

6.1 Rack-scale Computing

Rack-scale computing in next generation data centers advocates disaggregating re-

sources needed for a computing task (i.e. processors, memory, networking and stor-

age) into a pool of resources that are interconnected with high-speed network fabrics.

This level of hardware resource aggregation requires a redesign of the data center net-

work fabric to provide stronger networking support for low-latency, high-throughput

and lossless properties for next generation data center networks. Fundamentally, the

economy of scale in the cloud environment requires that disaggregated cloud resources

to serve applications with different performance requirement and traffic patterns. One

future direction is to implement network support for disaggregated storage systems.

176

6.2 Scaling to 100G

Data center network functions are migrating to the end host, while network speed is

increasing to 50G or 100Gbps. Unfortunately, end host CPU is a scarce resource that

must be used wisely. Dedicating 10s of cores for network processing is both impractical

and uneconomical. A programmable dataplane in NIC is able to offload network func-

tion to the NIC to accelerate end host packet processing while maintaining software pro-

grammability. A future direction to scale programmable dataplane to support a 100Gbps

line rate and design the associated end-host network stack to share the 100Gbps network

capacity among 10s or 100s of CPU cores.

6.3 Packet Scheduling

A packet scheduling algorithm can achieve different desired performance objectives,

such as fairness, reducing network flow tail latencies, and minimizing flow completion

times. Most packet scheduling algorithms are employed on packet switching networks

that have statistical multiplexing on communication links. We introduced a global clock

synchronization protocol that can emulate a time division multiplexing (TDM) network

on top of a packet switching network. A promising research direction is to investigate

how the resulting TDM network can improve the packet scheduling algorithm to achieve

less network jitter and packet loss. Moreover, future research could experiment with real

hardware prototypes built with systems developed in this dissertation.

177

6.4 Distributed and Responsive Network Control Plane

Routing is most implemented control algorithm in a network. Routing is the act of

moving packets across the network from a source to a destination. It involves two basic

activities: determining the optimal routing paths and forwarding the packets through a

network. The complexity of routing algorithm lies in the path determination.

An optimal routing algorithm selects the best route based on the basis of the current

network conditions and the target metrics. In large-scale networks, collecting network

conditions can be difficult to accomplish in realtime. A scalable and optimal routing

algorithm must be able to measure the network at scale in a distributed manner and

aggregate the result efficiently for a routing algorithm to consume.

A programmable dataplane can provide a flexible substrate to implement a fast and

responsive routing algorithm in the dataplane in a distributed manner. Each dataplane in

a network element can monitor network conditions simultaneously and, thus, alleviate

the need for a powerful centralized routing control platform. Because each network

element can react to traffic conditions locally, response to network events, such as failure

or congestion, can be instant. A future direction could look into how to measure and

implement a network routing algorithm using a programmable dataplane.

178

CHAPTER 7

CONCLUSIONS

At the time of writing this dissertation, network dataplane implementation often is a

trade-off between flexibility and performance. Furthermore, programming a reconfig-

urable device, such as FPGAs, requires hardware domain expertise, which many net-

work programmers do not have. Finally, parts of the network dataplane are not pro-

grammable at all.

We have explored a new approach to building a programmable dataplane that bal-

ances flexibility and performance. In particular, we investigate two building blocks of

the network dataplane programming for network devices: the packet processing pipeline

and the network device interface. By leveraging a good packet processing abstraction

called the match-action pipeline and a domain specific language built on top of the ab-

straction, developers can program the network dataplane to implement a variety of novel

applications. Furthermore, by opening the inner workings of the physical layer, devel-

opers can study networks and the network stack at a heretofore inaccessible level, with

the precision of network measurements improved by orders of magnitude.

To validate our approach, we have described the design, implementation and evalua-

tion of two systems that together constitute steps towards an instance of a programmable

dataplane. P4FPGA is an instance of a dataplane language compiler and runtime that

enables a programmable packet processing pipeline. SoNIC is an instance of a pro-

grammable physical layer that implements the physical layer of the network protocol

stack in software. We also have shown a number of applications are enabled by these

two systems: a network accelerated consensus protocol, a precise bandwidth estimation

tool, and an accurate data center clock synchronization protocol.

179

A programmable network dataplane provides high-performance, customized packet

processing and, therefore, it decouples the task of network programming from the hard-

ware that realizes the implementation. This decoupling is an important step toward the

further optimization of cloud computing and networking resources. A network function

can be placed on any device on a network path or distributed among multiple network

devices without significant engineering efforts. As the driven force behind the next gen-

eration of software defined networking, the programmable dataplane will affect not just

how network devices are built, but the entire networking ecosystem.

180

APPENDIX A

NETWORK CONCEPTS

A basic understanding of networking is important to understand the contributions of

this dissertation. In this section, we provide a brief overview of common networking

concepts. We discuss basic terminology, common protocols, and the functionalities of

different layers of networking.

A.1 Networking Basic Terminology

First, we define some common terms in networking.

Packet A packet is, generally speaking, the most basic unit that is transfered over a

network. When communicating over a network, packets are the envelopes that carry data

in pieces from one end point to the other. Packets have a header portion that contains

information about the packet including the source and destination, timestamp, etc. The

main portion of a packet that contains the actual data is called the body or the payload.

Protocol A protocol is a set of rules and standards that defines a language that devices

can use to communicate. These are the rules or standards that define the syntax, seman-

tics and synchronization of communication and possible error recovery methods. There

are a great number of protocols in use extensively in networking, and they are often

implemented in different layers. Some low level protocols are TCP, [32] UDP, [166]

IP, [59, 167] and ICMP. [168] Application layer protocols can be built on top of these

lower layer protocols, such as HTTP, [37,66] SSH, [206] and FTP. [169] Protocols may

be implemented by hardware, software, or a combination of both.

181

Connection In networking, a connection, or sometimes called a session, is a semi-

permanent interactive information interchange between two or more communicating

devices. A connection is built before the data transfer and then is deconstructed at the at

the end of the data transfer.

A.2 Network Layering Model

The TCP/IP model, more commonly known as the Internet protocol suite, is a layering

model that has been widely adopted. [103] In the TCP/IP model, five separate layers are

defined.

Application Layer The application layer is responsible for creating and transmitting

user data between applications. The applications can be on remote systems, and should

appear to operate as if locally to the end user. The application layer is also known as

Layer 5 of the network protocol stack.

Transport Layer The transport layer is responsible for communication between pro-

cesses. This network layer uses ports to address different services. It can build up un-

reliable connections, such as UDP, (User Datagram Protocol), or reliable connections,

such as TCP, (Transmission Control Protocol) depending on the type of protocol used.

The transport layer is also known as the Layer 4 of the TCP/IP network protocol stack.

Network Layer The network layer is used to route data from one node to another

in a network. This layer is aware of the address of the endpoints of the connections.

Internet protocol (IP) addresses are commonly used as the addressing scheme. An IP

182

address could be 32-bit for IPv4 [167] and 128-bit for IPv6. [59] The network layer is

also known as the Layer 3 of the network protocol stack.

Link Layer The link layer implements the actual topology of the local network that

allows the IP in the network layer to present an addressable interface. A commonly used

link layer technology is Ethernet. [139] 10Gbps Ethernet is common as of the date of

this disseration. The Ethernet data communication standard is maintained and extended

by the IEEE 802.3 working group. [14] The standard supports full-duplex operation,

and is widely supported by network vendors. The link layer is also known as Layer 2 of

the network protocol stack.

Physical Layer The physical layer deals with bit-level transmission between different

devices and supports electrical or optical interfaces connecting to the physical medium

for communication. The physical layer is the first layer of the network protocol stack.

A.3 Packet Encapsulation

A packet is transmitted by encapsulating the payload inside layers of packet headers. For

instance, Figure A.1 shows the encapsulation of a UDP datagram as an IP packet. The

UDP header is prepended to the payload of the packet as it is sent from the application

layer to transport layer. Next, an IP header is prepended to the packet in the network

layer. Finally, the packet is encapsulated inside an Ethernet frame, which includes an

Ethernet header, a preamble and and a 32-bit Cyclic Redundancy Check, (CRC) which

is used to detect bit corruption during transmission.

183

Figure A.1: Encapsulation of data as it goes down the network stack.

A.4 Switch and Router

Switches and routers are both computer networking devices that allow one or more

computers to be connected to other computers, networked devices, or to other networks.

A router is a device that forwards data packets along networks. A router is con-

nected to at least two networks, commonly two LANs or WANs. Routers are located

at gateways, the places where two or more networks connect. Routers use headers and

forwarding tables to determine the best path for forwarding the packets, and they use

protocols such as ICMP [168] to communicate with each other and configure the best

route between any two hosts.

A switch is a device that filters and forwards packets between LAN segments.

Switches operate at the data link layer (Layer 2) and sometimes the network layer (Layer

184

3) of the OSI Reference Model [212] and therefore support any packet protocol. LANs

that use switches to join segments are called switched LANs or, in the case of Ethernet

networks, switched Ethernet LANs.

In the context of this dissertation, we used the term switch and router interchangably.

Physical

Data Link

Network

Transport

Application

Physical

Data Link

Network

Physical

Data Link

Network

Physical

Data Link

Network

Transport

Application

Physical

Data Link

Network

End Host Switch Router Switch End Host

Figure A.2: Network Dataplane Built with Endhosts, Switches and Routers.

As shown in Figure A.2, a dataplane typically consists of more than one network

devices. The endhost implements all five layers of the network protocol stack, which

communicates with the network protocol stack on another endhost through a series of

network devices, e.g. switches and routers. The switches and routers implement the first

two or three layers of the network stack. The IP routers receive TCP/IP packets, look

inside each packet to identify the source and target IP addresses, and then forward these

packets as needed to ensure the data reaches its final destination.

185

APPENDIX B

IEEE 802.3 STANDARD

In this section, we discuss the physical layer of the network stack in detail. The physical

layer is the lowest layer of the network stack (Appendix A.2), and is often implemented

in hardware. According to the IEEE 802.3 standard, [13] the physical layer, (PHY) of

10 GbE consists of three sublayers: the Physical Coding Sublayer, (PCS) the Physical

Medium Attachment (PMA) sublayer and the Physical Medium Dependent (PMD) sub-

layer. (See Figure B.1) The PMD sublayer is responsible for transmitting the outgoing

symbolstream over the physical medium and receiving the incoming symbolstream from

the medium. The PMA sublayer is responsible for clock recovery and (de-)serializing

the bitstream. The PCS performs the blocksync and gearbox, (we call this PCS1) scram-

ble/descramble, (PCS2) and encode/decode (PCS3) operations on every Ethernet frame.

The IEEE 802.3 Clause 49 explains the PCS sublayer in further detail, but we will sum-

marize below.

When Ethernet frames are passed from the data link layer to the PHY, they are re-

formatted before being sent across the physical medium. On the transmit (TX) path, the

PCS performs 64b/66b encoding and encodes every 64-bit of an Ethernet frame into a

66-bit block (PCS3), which consists of a two-bit synchronization header (syncheader)

and a 64-bit payload. As a result, a 10 GbE link actually operates at 10.3125 Gbaud.

(10G × 66
64) Syncheaders are used for block synchronization by the remote receive (RX)

path.

There are two types of 66-bit blocks: A data block and a control block. The data

block (/D/) is shown in the third row of Figure B.2 and conveys data characters from

Ethernet frames. All other blocks in Figure B.2 are control blocks, which contain a

combination of data and control characters. Each rectangle labeled by a Di represents

186

Application (L5)

Transport (L4)

Network (L3)

Data Link

(L2)

Physical

(L1)

LLC (Logical Link Control)

MAC (Media Access Control)

RS (Reconcilliation Sublayer)

PCS(Physical Coding Sublayer)

PCS3

PCS2

PCS1

TX RX

PMA (Physical Medium Attachment)

PMD(Physical Medium Dependent)

Encoder Decoder

Scrambler Descrambler

Gearbox Blocksync

Figure B.1: IEEE 802.3 10 Gigabit Ethernet Network stack.

8-bit data characters, and Ci represents 7-bit control characters. An Idle character (/I/)

is one of control characters that are used to fill any gaps between two Ethernet frames.

Given an Ethernet frame, the PCS first encodes a Start control block, (S 0, and S 4 in

Figure B.2) followed by multiple data blocks. At the end of the packet, the PCS encodes

a Terminate control block (T0 to T7) to indicate the end of the Ethernet frame. Note that

one of Start control blocks (S 4) and most of Terminate control blocks (T0 to T7) have

one to seven control characters. These control characters are normally filled with Idle

characters. (zeros)

There is a 66-bit Control block, (/E/) which encodes eight seven-bit Idle characters.

(/I/) As the standard requires at least twelve /I/sin an interpacket gap, it is guaran-

teed to have at least one /E/ block preceding any Ethernet frame1. Moreover, when

there is no Ethernet frame, there are always /E/ blocks: 10 GbE is always sending at

10 Gbps and sends /E/ blocks continuously if there are no Ethernet frames to send.

1Full-duplex Ethernet standards such as 1, 10, 40, 100 GbE send at least twelve /I/s(at least one
/E/) between every Ethernet frame.

187

Bit Position

/D/

/E/

/S0/

/S4/

/T0/

/T1/

/T2/

/T3/

/T4/

/T5/

/T6/

/T7/

0 1

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

BlockType

0x1e

0x78

0x33

0x87

0xaa

0xb4

0xcc

0xd2

0xe1

0xff

0x99

D0 D1 D2 D3 D4 D5 D6 D7

Block Payload

C0 C1 C2 C3 C4 C5 C6 C7

D1 D2 D3 D4 D5 D6 D7

C0 C1 C2 C3 D5 D6 D7

D0

D0

D0

D0

D0

D0

D0

D1

D1

D1

D1

D1

D1

D2

D2

D2

D2

D2

D3

D3

D3

D3

D4

D4

D4

D5

D5 D6

C1 C2

C2

C3

C3

C3

C4 C5 C6 C7

C4

C4

C4

C5

C5

C5

C5

C6

C6

C6

C6

C6

C7

C7

C7

C7

C7

C7

sync

0 1 2 65

Figure B.2: IEEE 802.3 64b/66b block format.

The PCS scrambles each encoded 66-bit block (PCS2) to maintain DC balance2 and

adapts the 66-bit width of the block to the 16-bit width of the PMA interface (PCS1;

the gearbox converts the bit width from 66- to 16-bit width,) before passing it down

the network stack. The entire 66-bit block is transmitted as a continuous stream of

symbols which a 10 GbE network transmits over a physical medium. (PMA & PMD)

On the receive (RX) path, the PCS performs block synchronization based on two-bit

syncheaders, (PCS1) descrambles each 66-bit block (PCS2) before decoding it. (PCS3)

Above the PHY is the Media Access Control (MAC) sublayer and Reconciliation

Sublayer. (RS) The 10 GbE MAC operates in full duplex mode; it does not handle

collisions. Consequently, it only performs data encapsulation/decapsulation and media

access management. Data encapsulation includes framing as well as error detection. A

Cyclic Redundancy Check (CRC) is used to detect bit corruption. Media access man-

agement inserts at least 96 bits (twelve /I/characters) between two Ethernet frames.

The RS is responsible for additionally inserting or removing idle characters (/I/s) be-

tween Ethernet frames to maintain the link speed. The channel between the RS and the

PHY is called the 10 gigabit media independent interface, (XGMII) and is four bytes

wide. (Figure B.1) Data is transferred at every rising and falling edge. As a result, the

2Direct current (DC) balance ensures a mix of 1’s and 0’s is sent.

188

channel operates at 156.25 MHz. (= 10Gb/32bit/2)

On the TX path, upon receiving a layer 3 packet, the MAC prepends a preamble,

start frame delimiter, (SFD) and an Ethernet header to the beginning of the frame. It

also pads the Ethernet payload to satisfy a minimum frame-size requirement, (64 bytes)

computes a CRC value, and places the value in the Frame Check Sequence (FCS) field.

On the RX path, the MAC checks the CRC value and passes the Ethernet header and

payload to higher layers while discarding the preamble and SFD.

189

APPENDIX C

LANGUAGE AND FRAMEWORKS

C.1 Bluespec System Verilog

We used Bluespec System Verilog (BSV) [147] as our main implementation language

on FPGA. BSV is a high-level language that is also fully synthesizable to hardware.

BSV is used in many design activities: specifications, architectural modeling, design

and implementation, verification.

The behavioral model of BSV is popular among formal specification languages for

complex concurrent systems, called Atomic Rules and Interfaces, which is also known

as Term Rewriting Systems, Guarded Atomic Actions. The model of atomic rules is fun-

damentally parallel, which is suited for the fine-grain parallelism in complex hardware

design. The atomicity of rules is a powerful tool in thinking about correct behavior in

the presence of complex parallelism.

BSV’s high-level programming languages builds on and borrows ideas from System

Verilog and Haskell. It uses ideas from System Verilog for modules and module hier-

archy; separation of interfaces from modules; syntax for literals, scalars, expressions,

blocks, loops; syntax for user-defined types, (enums, structs, tagged unions, arrays) and

so on. BSV uses Haskell for more advanced types, parameterization and static elabora-

tion.

BSV is superior than high level synthesis in C++ in the following ways:

• Architecturally transparent.

• Higher-level abstraction for concurrency.

190

• Parameterization

• Strong data type system

• Strong static checking

• Fully synthesizable

As a result, BSV enables a single, unified language for designing synthesizable ex-

ecutable specs, synthesizable (fast, scalable) architecture models, synthesizable design

and implementation, and synthesizable test environments. All of these can be run on

FPGA platforms.

A detailed documentation on the language features of Bluespec can be found in

Bluespec Reference Guide. [147] Bluespec beginner is suggested to read the book

“Bluespec by example,” which has a more general treatment of the language with il-

lustrative examples.

C.2 Connectal Framework

Most modern systems are composed of both hardware and software components. For ex-

ample, the system prototypes described in this dissertation consist of a host system with

the multi-core CPU, system memory, and PCI Express (PCIe) bus, and a PCIe expansion

card containing (among other things) a high-performance FPGA chip. The FPGA board

was used as a platform to prototype packet processors and low level network stack, such

as physical layers.

A common problem when developing with a system architecture as above is the task

of enabling communication between host and FPGA board via PCIe bus. The existing

191

solutions are often ad hoc, tedious, fragile, and difficult to maintain. Without a consis-

tent framework and tool chain for managing the components of the hardware/software

boundary, designers are prone to make simple errors which can be expensive to debug.

Connectal is a software-driven hardware development framework. Connectal con-

sists of a fully-scripted tool chain and a collection of libraries which can be used to

develop production quality applications comprised of software components running on

CPUs communicating with hardware components implemented in FPGA or ASIC.

We give a brief overview of the Connectal work flow and tool chain. The

complete tool chain, libraries, and many running examples may be obtained at

www.connectal.org. Most of the content below can be found in the introductory pa-

per for Connectal, [96] which we reproduced below.

C.2.1 Top level structure of Connectal applications

The simplest Connectal application consists of 4 files:

Makefile The top-level Makefile defines parameters for the entire application build

process. In its simplest form, it specifies which Bluespec interfaces to use as portals,

the hardware and software source files, and the libraries to use for the hardware and

software compilation.

Application Hardware Connectal applications typically have at least one BSV file

containing declarations of the interfaces being exposed as portals, along with the imple-

mentation of the application hardware itself.

192

Top.bsv In this file, the developer instantiates the application hardware modules, con-

necting them to the generated wrappers and proxies for the portals exported to software.

To connect to the host processor bus, a parameterized standard interface is used, mak-

ing it easy to synthesize the application for different CPUs or for simulation. If CPU

specific interface signals are needed by the design, (for example, extra clocks that are

generated by the PCIe core,) then an optional CPU-specific interface can also be used.

If the design uses multiple clock domains or additional pins on the FPGA, those

connections are also made here by exporting a Pins interface. The Bluespec compiler

generates a Verilog module from the top level BSV module, in which the methods of

exposed interfaces are implemented as Verilog ports. Those ports are associated to phys-

ical pins on the FPGA using a physical constraints file.

Application CPP The software portion of a Connectal application generally consists

of at least one C++ file, which instantiates the generated software portal wrapper and

proxies. The application software is also responsible for implementing main.

C.2.2 Development Cycles

After creating or editing the source code for the application, the development cycle

consists of four steps: generating makefiles, compiling the interface, building the appli-

cation, and running the application.

Generating Makefiles Given the parameters specified in the application Makefile and

a platform target specified at the command line, Connectal generates a target-specific

Makefile to control the build process. This Makefile contains the complete dependency

193

information for the generation of wrappers/proxies, the use of these wrappers/proxies

in compiling both the software and hardware, and the collection of build artifacts into a

package that can be either run locally or over a network to a remote device under test

machine.

Compiling the Interface The Connectal interface compiler generates the C++ and

BSV files to implement wrappers and proxies for all interfaces specified in the applica-

tion Makefile. Human-readable JSON is used as an intermediate representation of portal

interfaces, exposing a useful debugging window as well as a path for future support of

additional languages and IDLs.

Building the Application A target in the generated Makefile invokes GCC to compile

the software components of the application. The Bluespec Compiler (BSC) is then used

to compile the hardware components to Verilog. A parameterized Tcl scripts is used

to drive Vivado to build the Xilinx FPGA configuration bitstream for the design. The

framework also supports Altera tool chains.

Running the Application As part of our goal to have a fully scripted design flow, the

generated Makefile includes a run target that will program the FPGA and launch the

specified application or test bench. In order to support shared target hardware resources,

the developer can direct the run to particular machines, which can be accessed over the

network.

194

APPENDIX D

FPGA IMPLEMENTATION

In this appendix, we describe the FPGA hardware implementations of the P4FPGA,

(D.1) SoNIC, (D.2) and DTP (D.3) platforms.

D.1 P4FPGA Hardware Implementation

First, we describe the design and implementation of the P4FPGA platform. We describe

the hardware platform on which P4FPGA is developed, the hardware and software in-

terface, and the building blocks of hardware implementation in Bluespec.

D.1.1 NetFPGA SUME

The NetFPGA SUME [211] platform contains a Xilinx Virtex-7 XC7V690T

FPGA [205] that can be programmed with user-defined logic and implements the PCI

interface to a host processor. The platform includes three 72 Mbits of Static RAM

(SRAM) with 36bit wide buses operating at 500MHz. The platform also contains two

4GB third-generation Double Data Rate (DDR3) Synchronous DRAM (SDRAM) de-

vices that operate at 850Hz. Four Small Form-factor Pluggable (SFP) transceivers are

provided to support 10Gbps Ethernet with four globally unique MAC addresses.

The NetFPGA SUME platform receives power via a 2x4 pin PCI Express Auxiliary

Power Connector. The 2x4 pin PCI Express Auxiliary Power receptacle can accept both

2x3 and 2x4 pin PCI Express Auxiliary Power Plugs found on a standard Advanced

Technology eXtended (ATX) power supply. When used in servers that do not provide

standard ATX power supply, e.g. PowerEdge R720, [60] the Graphical Processing Unit

195

(a) 8-pin end

(b) 6-pin end

Figure D.1: Cable Pin-out to use GPU power source for PCI Express Power Connector.

(GPU) power supply can be used with a special adapter cable. The pin-out of the special

adapter cable is shown in figure D.1. It is recommended to always check the correctness

of the pin-out with a multi-meter using the connectivity test mode. Off-the-shelf PCI

power supply cables may not be compatible with a GPU power source, and may cause

damage to the power system of the servers. Cables can be purchased from http:

//athenapower.us.

196

http://athenapower.us
http://athenapower.us

PCI
Express

Match and Action Pipeline

10G
Rx MAC

10G
Rx MAC

…

10G
Tx MAC

10G
Tx MAC

…

250MHz156.25MHz 156.25MHz

Configuration

… …

Figure D.2: P4FPGA Clock Domains.

The Xilinx tools typically communicate with FPGAs using the Test Access Port

and Boundary-Scan Architecture, commonly referred to as Joint Test Action Group.

(JTAG) During JTAG programming, a .bit file is transferred from the PC to the

FPGA using the on-board USB-JTAG circuitry or an external JTAG programmer. Pro-

gramming the NetFPGA-SUME with an uncompressed bitstream using the on-board

USB-JTAG circuitry usually takes around a minute. With P4FPGA, the programming

is done through an open-source tool called fpgajtag which is available at https:

//github.com/cambridgehackers/fpgajtag. The fpgajtag tool allows

developers to program Xilinx FPGAs without installing the vendor-specific tools, such

as the hardware server or the iMPACT tool in Vivado. [204]

The P4FPGA has two clock domains: the PCI express clock domain running at 250

Mhz and the 10Gb Ethernet clock domain running at 156.25 Mhz. The PCI express

clock domain is used to drive a packet processing pipeline. It has a 512 bit width datap-

ath. The overall theoretical single pipeline throughput is 128Gbps. The 10Gb Ethernet

clock domain is used to drive the Ethernet sub-system, including the MAC block and

PHY block. (See Figure D.2)

197

https://github.com/cambridgehackers/fpgajtag
https://github.com/cambridgehackers/fpgajtag

1 interface SimpleRequest;
2 method Action read_counter_req(Bit#(32) idx);
3 endinterface
4
5 interface SimpleIndication;
6 method Action read_counter_rsp(Bit#(32) val);
7 endinterface

Figure D.3: Simple Connectal Example.

D.1.2 Hardware Software Interface

The hardware-software interface in P4FPGA is implemented using Connectal. [96] (See

Appendix C.2) Communications between hardware and software are provided by a

bidirectional flow of events and regions of memory shared between hardware and soft-

ware. Events from software to hardware are called requests and events from hardware

to software are called indications.

We describe the interface between hardware and software components using Blue-

spec as an Interface Description Language (IDL). A Connectal framework script gener-

ates the implementation of the interface, and combines it with libraries to coordinate the

data-flow between software and hardware together. A logical request/indication channel

is referred to as a portal. Each request and indication channel is called a portal method.

For example, a portal can be used to implement a channel to access hardware counters.

Figure D.3 illustrates the definition of a hardware-software interface to read a 32-bit

counter from an array of counters in hardware. Line 2 shows the read counter req

function that takes the index of the counter as an input parameter. Line 6 represents the

read counter rsp function that return the value of the counter which is an input to

the function. The request function is invoked by a software process on the host, and the

response function is invoked by hardware on FPGA.

198

1 interface MemoryTestRequest;
2 method Action read_version();
3 // Packet Generator and Capturer APIs
4 method Action writePacketData(Vector#(2, Bit#(64)) data,

Vector#(2, Bit#(8)) mask, Bit#(1) sop, Bit#(1) eop);
5 method Action start_pktgent(Bit#(32) iteration, Bit#(32)

ipg);
6 method Action stop_pktgen();
7 method Action start_pktcap(Bit#(32) iteration);
8 method Action stop_pktcap();
9 // Register Access APIs

10 method Action wr_role_reg(Role role);
11 method Action rd_role_reg();
12 method Action wr_datapath_id_reg(Bit#(DatapathSize)

datapath);
13 method Action wr_instance_reg(Bit#(InstanceSize) inst);
14 method Action wr_value_reg(Bit#(10) inst, Vector#(8, Bit

#(32)) value);
15 method Action wr_round_reg(Bit#(10) inst, Bit#(RoundSize)

round);
16 method Action wr_vround_reg(Bit#(10) inst, Bit#(RoundSize

) round);
17 // Table Access APIs
18 method Action sequenceTable_add_entry(Bit#(16) msgtype,

SequenceTblActionT action);
19 method Action acceptorTable_add_entry(Bit#(16) msgtype,

AcceptorTblActionT action);
20 method Action dmacTable_add_entry(Bit#(48) mac, Bit#(9)

port);
21 // Performance Measurement APIs
22 method Action read_ingress_info();
23 method Action read_hostchan_info();
24 method Action read_txchan_info();
25 method Action read_rxchan_info();
26 method Action read_ingress_perf();
27 method Action read_parser_perf();
28 method Action read_pktcap_perf();
29 method Action read_deparser_perf();
30 method Action set_verbosity(Bit#(32) v);
31 endinterface

Figure D.4: Paxos Request Interface Definition in Connectal.

199

1 typedef struct {
2 LUInt pktIn;
3 LUInt pktOut;
4 } TableDbgRec deriving (Bits, Eq, FShow);
5
6 typedef struct {
7 LUInt fwdCount;
8 TableDbgRec accTbl;
9 TableDbgRec seqTbl;

10 TableDbgRec dmacTbl;
11 } IngressDbgRec deriving (Bits, Eq, FShow);
12
13 interface PaxosIndication;
14 method Action rd_version_resp(Bit#(32) version);
15 method Action rd_ingress_resp(IngressDbgRec rec);
16 method Action rd_hostchan_resp(HostChannelDbgRec rec);
17 method Action rd_txchan_resp(TxChannelDbgRec rec);
18 method Action rd_rxchan_resp(HostChannelDbgRec rec);
19 method Action rd_role_resp(Role role);
20 method Action rd_ingress_perf_resp(IngressPerfRec rec);
21 method Action rd_parser_perf_resp(ParserPerfRec rec);
22 method Action rd_pktcap_perf_resp(PktCapRec rec);
23 method Action rd_deparser_perf_resp(DeparserPerfRec rec);
24 endinterface

Figure D.5: Paxos Indication Interface Definition in Connectal.

We implemented the control channel between a packet processing pipeline and soft-

ware network controllers using the hardware-software interface. For example, Fig-

ure D.4 and D.5 illustrates the control plane interface for P4Paxos. (described in Sec-

tion 3.5)

Request APIs Figure D.4 shows the definition for the request interfaces. The request

interfaces specify the commands and associated data sent by the software controller

to the FPGA hardware. For example, the P4Paxos request interfaces consist of four

categories of commands: packet generator commands, register access commands, table

access commands and performance measurement commands.

200

P4Paxos has a built-in packet generator and capturer which can replay packet traces

stored in a special packet buffer. The packet generator and capturer are controlled by the

APIs shown in Figure D.4 from line 4 to 8. The packet trace in the special packet buffer

is programmed via the writePacketData function show in line 4 of Figure D.4.

The writePacketData command takes four parameters: data, mask, sop, eop,

which respresents a single flit of a packet. A flit of the packet is a chunk of data that can

be transferred within one clock cycle. Typically, the amount of bits in a flit is equal to

the datapath width. In this case, the flit is 128-bit or 16 bytes wide. The mask contains

one valid bit for each byte of data, and is 16-bit in total. The sop and eop represent

the start flit and end flit of a packet. A 64-byte packet is divided into four flits. The first

flit has sop set to 1, and the last has eop set to 1. The commands in line 5 to 8 control

the start and stop of the packet generator and capturer. The start pktgen command

takes two parameters: iteration and ipg. The iteration parameter control how

many packets to be generated by the packet generator. The ipg parameter controls the

inter-packet gap between each generated packet to control the generated packet rate.

The P4Paxos program requires stateful memory, such as registers to keep track of

the state in the consensus protocol instance. Lines 10 to 16 show the APIs supported

by P4Paxos for register access. The software control program can use the wr * APIs

to set the initial values in the stateful registers. The software control program can also

use the rd * APIs to read the current value in the stateful registers, as shown in line

11 rd role reg. The value of role register is returned through the indication APIs,

which we will explain later.

The tables in P4Paxos program are programmed through the table access commands.

Lines 18 to 20 show the APIs for adding entries to the tables in P4Paxos. The software

control program can call the sequenceTable add entry command with two pa-

201

rameters to program the sequence table. (described in Section 3.5.2) The first parameter

msgtype represents that type of consensus message to match with. The second param-

eter represents the associated action upon matching the message type.

Finally, the performance of P4Paxos program can be measured by polling the statis-

tics counters embedded in the dataplane. The commands are shown in lines 22 to 29 in

Figure D.4. A software control program can invoke these commands to retrieve the cor-

responding counter values in hardware. The values are returned through the indication

APIs in Figure D.5.

Indication APIs The indication APIs are used by FPGA hardware to send messages

to software. The most common use case is to retrieve various counter values for per-

formance measurement and debugging. The value returned by the indication APIs

are defined as a custom struct type, (line 1 to 11 in Figure D.5) which may contain

more than one counter value. For example, the rd ingress resp command in line

15 in Figure D.5 returns a IngressDbgRec struct, which is defined in line 6 to

11 in Figure D.5. The IngressDbgRec struct contains a LUInt (64 bit) integer

(fwdCount) and three TableDbgRec structs. (accTbl, seqTbl, dmacTbl.)

The TableDbgRec struct is defined in line 1 to 4 in Figure D.5, which contains two

LUInt-type integer. (pktIn, pktOut.) In total, the rd ingress resp command

sends seven LUInt-type integers to software.

D.1.3 Packet Processing Pipeline Templates

We will now discuss how to map P4 into Bluespec. Importantly, P4FPGA requires

platform specific details such as data path widths, whereas the P4 language does not re-

202

quire these details. As a result, the design of P4FPGA additionally requires considering

hardware implementation-specific details.

Packet Representation First, We will discuss packet representation used in the

P4FPGA pipeline. Fixed length headers are represented as a struct in P4FPGA. As

shown below in lines 1-4, Header t is a direct translation of the P4 definition into Blue-

spec.

1 typedef struct {
2 Bit#(64) preamble;
3 Bit#(32) numValid;
4 } Header_t;
5
6 Reg#(Header_t) header = mkReg(unpack(0));
7 Reg#(Bit#(96)) bits = mkReg(pack(header));
8 Maybe#(Header_t) hv = tagged Valid header;

Figure D.6: An example packet header in P4FPGA in Bluespec.

A header instance may be checked if it is valid. We use the Maybe type in Bluespec

for tagging valid or invalid to a data type. (line 8) For variable-length packet headers, at

most one field may have undefined width, and the total length must be specified to give a

upper bound on the size of the header. We use tagged union to ensure the variable-length

field also has a well-defined type. In addition, conversion between type and canonical

bit-level representation is performed by pack and unpack functions in Bluespec. Note

that in the code snippet in Figure D.6, Reg is polymorphic.

Parser When a network packet arrives at a receiver MAC layer or PCIe channel, it

is first parsed by a parser to extract packet headers for the Match-Action pipeline to be

processed. There is one parser for each channel. Therefore, all packets arriving at the

same channel are processed in order.

203

1 // Assume fifo_in contains incoming data
2 FIFO#(Bit#(128)) fifo_in <- mkFIFO;
3
4 Stmt parse_head =
5 seq
6 action
7 let data <- toGet(fifo_in).get;
8 // Assume data[95:0] contains Header_t
9 Hdr_t src_route = unpack(data[95:0]);

10 Bit#(32) remaining_bits = data[128:96];
11 endaction
12 action
13 ...
14 endaction
15 endseq
16
17 FSM fsm <- mkFSM(parse_head)
18 Once run_once <- mkOnce(fsm.start);

Figure D.7: Parser implementation.

The parser implementation uses an acyclic directed graph, i.e. parse graph, to rep-

resent packet headers. [70] In the parse graph, a vertex represents a header field, and

an edge represents a transition between header fields. Implementing a parse graph is

equivalent to generating a Finite State Machine (FSM). We optimized the implementa-

tion of the FSM for performance, resource efficiency and code simplicity. To achieve

low latency and high throughput, the parser must process a packet as soon as a sufficient

number of bytes have arrived, even if the entire packet has not yet arrived. For example,

the parser can start processing the Ethernet header, as soon as the first flit (128-bit) of

the packet has been received. This is different from a software implementation of packet

parser, such as the ones implemented in software switch, e.g. OpenvSwitch. [164] In a

software packet parser, it usually assumes the entire packet is received in a packet buffer

before the parsing begins. However, storing the entire packet in the packet buffer in

hardware implementation is very costly and inefficient use of on-chip memory resource.

Bluespec provides a convenient language feature to express FSMs, as shown in Fig-

204

ure D.7. Stmt creates a multi-cycle statement (each action block is one-cycle) and

assigns the statement to a variable parse head, lines 4-15. parse head is used to

create a FSM instance fsm, line 17, and the execution of fsm can be explicitly con-

trolled by certain conditions, line 18, e.g. enough bits are buffered for parsing. Multiple

FSMs can be composed sequentially to form a larger FSM, or they can operate in par-

allel to implement look-ahead or speculative parsers [102]. During parser generation,

we need to take into account the physical constraints of the hardware platform, e.g. the

width of data path. In our platform, the data-path width is either 128-bits or 256-bit due

to the width of the PCI Express engine.

Match and Action Engine In P4FPGA, match table inputs are typed. The imple-

mentation of internal match memory depends on the type of match table. For instance,

we have implemented binary content addressable memory (BCAM) and hash table to

implement an exact match table.

A match table exposes two types of interfaces: dataplane and control-plane inter-

faces. The match table dataplane interface accepts a match key input and generates an

output match result. For instance, an example match table in Figure D.8 accepts the

validity of a packet header as the match key and generates a corresponding drop or route

action to the action engine, shown in lines 3-9, 17-18. The match table control plane

interface inserts run-time rules into the match table. The definition of a match entry is

shown in lines 11-14 and the corresponding match table interface is shown in line 19.

Actions are implemented using atomic-guarded rules in Bluespec. Each rule im-

plements a primitive action. Interestingly, the semantics of rule in a Bluespec mod-

ule are identical to the parallel semantics of actions in P4. For example, applying

add to field to the TTL field of an IPv4 packet is shown in line 30-34. An-

205

1 typedef enum {Drop, Route} ActionType;
2
3 typedef struct {
4 Bool valid;
5 } MatchKey deriving (Bits, Eq);
6
7 typedef struct{
8 ActionType action;
9 } ActionOut deriving (Bits, Eq);

10
11 typedef struct {
12 Bool valid;
13 ActionType action;
14 } MatchEntry deriving (Bits, Eq);
15
16 interface MatchTable;
17 interface Put#(MatchKey) keyIn;
18 interface Get#(ActionOut) actionOut;
19 interface Put#(MatchEntry) putEntry;
20 ...
21 endinterface
22
23 module mkMatchTable(MatchTable);
24 ... instantiate CAM to match valid...
25 ... instantiate RAM to output action...
26 endmodule
27
28 module mkActionEngine;
29 ... internal fifo ...
30 rule add_to_field;
31 Bit#(8) ttl_now <- toGet(ttl_in).get;
32 Bit#(8) ttl_next = ttl_now - 1;
33 ttl_out.enq(ttl_next);
34 endrule
35 ... intf definition ...
36 endmodule
37
38 MatchTable match <- mkMatchTable;
39 ActionEngine action <- mkActionEngine;
40 mkConnection(match.actionOut, action.actionIn);

Figure D.8: Match table implementation.

206

other category of primitive actions modifies the layout of a packet. For example,

remove header changes the packet layout by removing a header. Removing a header

from a packet is equivalent to invalidating the header from the packet buffer. During de-

parsing, we need to enforce that the deparser skips the invalidated header field.

Control Flow The control flow specifies the order of pipeline stages and thus the order

in which a packet would flow through the pipeline stages. The P4FPGA compiler must

ensure that match and action stages are connected in the correct order, and that the tables

are applied to a packet in the sequence specified in P4 program. Bluespec provides a

useful library to connect hardware elements in a specified order. For example, if a match

table provides a Get interface for data type ActionOut and action engine provides a Put

interface of the same type, then the P4FPGA Bluespec compiler will ensure that the Put

occurs before the Get. We can use mkConnection to connect match table and action

engine as shown in line 38-40 of Figure D.8.

D.1.4 Code Generation

Configuration The following data summarize the generated P4FPGA configuration.

Ports:

• 4 of 10G Ethernet

• 1 of 8 lane PCIe Gen2.0/3.0 for management and debugging.

Pipeline:

• 1 Pipeline with two stages. (Ingress and Egress.)

207

• Pipeline supports 5 parsers, each parser is able to parse at 10Gb/s.

• Pipeline has 5 channels. (4 MACs and 1 PCIe.)

Shared Buffer Memory:

• 65KBytes on-chip memory buffer.

Packet size:

• 2048B, no Jumbo packet support.

Parser Generation The generated parser state machine consists of one state for each

packet header to be extracted. Within each header state, there are two sub-states: load

state and extract state. The code for generating these two states are shown in Figure D.9

and Figure D.10.

Figure D.9 shows the function to generate a Bluespec rule for a header state. A

rule in Bluespec is an atomic unit of execution which completes in one clock cycle if

the predicate of that rule is true for the clock cycle. Line 11 shows the signature of

the function genLoadRule. The function returns a rule data type as indicated by

the Rules keyword in front of the function name. The function takes two arguments:

state and len. The state argument is a constant value from an enum struct which

contains all possible header states of the parser, as shown in line 1 to 9 in Figure D.9.

The len argument is the bit length of the header to be extracted. For example, to

generate a load state for Ethernet header, the len argument is equal to 112 bit.

The body of the genLoadRule function is a return statement that returns a rule

named rl load. The rl load is predicated by the result of two expressions, as shown

208

1 typedef enum {
2 StateStart,
3 StateParseEthernet,
4 StateParseIpv4,
5 StateParseIpv6,
6 StateParseIcmp,
7 StateParseTcp,
8 StateParseUdp
9 } ParserState;

10
11 function Rules genLoadRule (ParserState state, Integer len);
12 return (rules
13 rule rl_load if ((parse_state_ff.first == state) &&

rg_buffered < len);
14 data_in_ff.deq;
15 let data = zeroExtend(data_this_cycle) << rg_buffered

| rg_tmp;
16 rg_tmp <= zeroExtend(data);
17 move_shift_amt(128);
18 endrule
19 endrules);
20 endfunction

Figure D.9: Load State Rule Generation.

in line 13. The first expression compares whether the current parser state is to parse the

particular header. The second expression checks if enough data have arrived from the

receiver MAC layer to be parsed. The current state and buffered data count are stored

in global registers that can be accessed by all parser states. The body of the generated

rl load rule reads data from input fifo data in ff, shifts the data by current offset

rg buffered in the data buffer rg tmp, and concatenates the data buffer with the

new shifted data. (See line 17)

Figure D.10 shows the function to generate the extract state. The signature of the

genExtractRule function is the same as the genLoadRule function. The pred-

icate of the genExtractRule function checks if enough data has arrived. If so,

the body of rl extract rule invokes the extract header function to extract the

209

1 function Rules genExtractRule (ParserState state, Integer
len);

2 return (rules
3 rule rl_extract if ((parse_state_ff.first == state) && (

rg_buffered >= len));
4 let data = rg_tmp;
5 extract_header(state, data);
6 rg_tmp <= zeroExtend(data >> len);
7 succeed_and_next(len);
8 parse_state_ff.deq;
9 endrule

10 endrules);
11 endfunction

Figure D.10: Extract State Rule Generation.

1 ‘define COLLECT_RULE(collectrule, rl) collectrule = List::
cons (rl, collectrule)

2
3 module mkParser(Parser);
4 List#(Rules) parse_fsm = List::nil;
5 ‘COLLECT_RULE(parse_fsm, joinRules(vec(genLoadRule(

StateParseEthernet, valueOf(ParseEthernetSz)))));
6 ‘COLLECT_RULE(parse_fsm, joinRules(vec(genExtractRule(

StateParseEthernet, valueOf(ParseEthernetSz)))));
7 Vector#(2, Rules) fsmRules = toVector(parse_fsm);
8 Empty fsmrl <- addRules(foldl(rJoin, emptyRules, fsmRules)

);
9 endmodule

Figure D.11: Collect All Generated Rules to State Machine.

packet header from the buffer rg tmp (See line 5) and updates the buffer by shifting

out the extract data. (See line 6). Finally, the extract rule changes the current parser state

to next available parser state in parse state ff fifo. (See line 8).

Finally, all generated rules are added to the generated parser module, as shown in

Figure D.11. Rules are stored in a List called parse fsm which is initialized to an

empty list List::nil. (See line 4). We wrote a helper function COLLECT RULE to

append a rule to a list of rules. Line 8 joins all generated rules with the foldl function

210

and adds the result to the parser module with the built-in addRules function.

Match Table Generation Match tables share similar interfaces and have similar be-

haviors. For example, they all perform look up on a particular match key and execute

a pre-defined set of operations on a set of packet headers. In Bluespec, we leverage the

typeclass to implement a generic match table. Specific match tables are generated as

instances of generic implementation.

The code for match table typeclass and instantiation is shown in Figure D.12. Line

1 shows the type for a generic match table, which consists of five generic types: nact,

metaI, actI, keyT, valT. The nact represents the number of P4 actions that a

match table entry can execute upon matching the key, e.g. a drop action or a forward

action. The metaI represents the packet header extracted from the packet. The actI

represents the tagged union of all possible parameters used by the P4 action. (defined

in line 9 to 16, used in line 26). The keyT represents the match key struct. The valT

represents the action and parameters stored in the match table, e.g. an entry in a L2 for-

warding table may contain an action of forward and an additional parameter of outgoing

port number.

The typeclass for a match table is defined from lines 2 to 6. The definition takes three

parameters: function table request, function execute action and a Content

Addressable Memory (CAM). The function table request is another typeclass that

must be instantiated by each match table to specify how key look up is implemented.

The function execute action is a typeclass that must also be instantiated by each

match table to specify the operation on packets after each table lookup. The typeclass

definition of each function is shown in lines 18 to 24.

Lines 31 and 32 shows how to declare an instance of the match table from the generic

211

1 typeclass MkTable #(numeric type nact, type metaI, type actI
, type keyT, type valT);

2 module mkTable#(function keyT table_request(metaI data),
3 function Action execute_action(valT data, metaI md,
4 Vector#(nact, FIFOF#(Tuple2#(metaI, actI))) fifo),
5 MatchTable#(a__, b__, g__, SizeOf#(keyT), SizeOf#(

valT)) matchTable)
6 (Table#(nact, metaI, actI, keyT, valT));
7 endtypeclass
8
9 typedef union tagged {

10 struct {
11 Bit#(48) dmac;
12 } SetDmacReqT;
13 struct {
14 Bit#(0) unused;
15 } Drop2ReqT;
16 } ForwardParam;
17
18 typeclass Table_request #(type reqT);
19 function reqT table_request (MetadataRequest data);
20 endtypeclass
21
22 typeclass Table_execute #(type rspT, type paramT, numeric

type num);
23 function Action table_execute (rspT rsp, MetadataRequest

meta, Vector#(num, FIFOF#(Tuple2#(MetadataRequest, paramT
))) fifos);

24 endtypeclass
25
26 typedef Table#(3, MetadataRequest, ForwardParam,

ConnectalTypes::ForwardReqT, ConnectalTypes::ForwardRspT)
ForwardTable;

27 typedef MatchTable#(256, SizeOf#(ConnectalTypes::ForwardReqT
), SizeOf#(ConnectalTypes::ForwardRspT))
ForwardMatchTable;

28
29 ‘SynthBuildModule1(mkMatchTable, String, ForwardMatchTable,

mkMatchTable_Forward)
30
31 ForwardMatchTable forward_table <- mkMatchTable_Forward("

forward");
32 Control::ForwardTable forward <- mkTable(table_request,

table_execute, forward_table);

Figure D.12: Match Table Typeclasses and Instances.

212

typeclass implementation. Line 31 declares a forward table which is the CAM in

a match table. Line 32 declares the Match and Action stages with instances of the

table request and table execute functions, and the forward table CAM.

Control Flow Generation The control flow is generated as part of the ingress and

egress pipelines as shown in Figure D.13. Lines 1 to 4 show the interface of the

ingress module. The ingress module has a PipeIn interface that receives Packet

to be processed. The Packet type contains information extracted from a packet by

the parser. The Packet tokens flow through the ingress pipeline. The exact path of

Packet token is controlled by the control flow rules shown in lines 17 to 31. For ex-

ample, a token is always enqueued to the entry req ff FIFO first. Rule rl entry

handles the new token as soon as the fifo is not empty, as predicated by the notEmpty

flag of the FIFO shown in line 17. The token is dequeued from the entry fifo, and en-

queued to the next stage. A conditional path is implemented with a if statement shown

in lines 29 to 33. Finally, the token is enqueued to the exit fifo, which is connected to

the queueing sub-system or egress pipeline.

Library P4FPGA also implemented a set of library modules for various datapath com-

ponents. We briefly describe some of them below.

• PacketBuffer.bsv implemented a generic ring buffer using block ram on

FPGA, which can store arbitrary elements and has a configurable depth.

• PacketGen.bsv implemented a packet generator that can replay arbitrary

packet traces as user specified speeds up to 10Gbps.

• SharedBuff.bsv implemented a shared packet buffer with multiple read and

write ports.

213

1 interface Ingress;
2 interface PipeIn#(Packet) prev;
3 interface PipeOut#(Packet) next;
4 endinterface
5 module mkIngress (Ingress);
6 FIFOF#(Packet) entry_req_ff <- mkFIFOF;
7 FIFOF#(Packet) entry_rsp_ff <- mkFIFOF;
8 FIFOF#(Packet) ipv4_lpm_req_ff <- mkFIFOF;
9 FIFOF#(Packet) ipv4_lpm_rsp_ff <- mkFIFOF;

10
11 FIFOF#(Packet) exit_req_ff <- mkFIFOF;
12 FIFOF#(Packet) exit_rsp_ff <- mkFIFOF;
13 mkConnection(toClient(ipv4_lpm_req_ff, ipv4_lpm_rsp_ff),

ipv4_lpm.prev_control_state);
14 mkConnection(ipv4_lpm.next_control_state[0],

setnhop_action.prev_control_state);
15 mkConnection(ipv4_lpm.next_control_state[1],

drop1_action.prev_control_state);
16
17 rule rl_entry if (entry_req_ff.notEmpty);
18 entry_req_ff.deq;
19 let _req = entry_req_ff.first;
20 let meta = _req.meta;
21 let pkt = _req.pkt;
22 Packet req = Packet {pkt: pkt, meta: meta};
23 node_2_req_ff.enq(req);
24 endrule
25 rule rl_node_2 if (node_2_req_ff.notEmpty);
26 node_2_req_ff.deq;
27 let _req = node_2_req_ff.first;
28 let meta = _req.meta;
29 if (meta.hdr.ipv4 matches tagged Valid .h &&& h.hdr.

ttl > 0) begin
30 ipv4_lpm_req_ff.enq(_req);
31 end
32 else begin
33 exit_req_ff.enq(_req);
34 end
35 endrule
36
37 interface prev = toPipeIn(entry_req_ff);
38 interface next = toPipeOut(exit_req_ff);
39 endmodule

Figure D.13: Generated Control Flow.

214

• SharedBuffMMU.bsv implemented a memory management unit on top of a

shared memory to support fixed-size packet cells, and provide a malloc and free

interface.

• XBar.bsv implemented a butterfly crossbar that supports numbers of clients that

are powers of two. Latency through XBar scales logarithmically with respect to

the number of clients.

In summary, the design of P4FPGA is flexible and efficient to be used to implement

a variety of applications. The source code of the generated applications can be found at

https://www.p4fpga.org.

D.2 SoNIC Hardware Implementation

A high level overview of the SoNIC architecture is shown in Figure 4.3. The SoNIC

architecture includes an FPGA firmware to realize the lower parts (Gearbox and

BlockSync) of the network physical layer, and a kernel-space software stack that im-

plements the upper parts (Physical Coding Sublayer) of the network physical layer. In

this section, we describe the implementation of SoNIC FPGA firmware.

D.2.1 Hardware Overview

The FPGA firmware is built on a HiTech Global Stratix IV platform which contains a

Altera Stratix IV EP4S100G2 FPGA. [3] The platform provides one 8-lane PCI Express

2.0 edge connector, and two SFP+ transceivers are provided to support 10Gbps Ethernet.

The PCI express block provides features to implement the transaction, data link, and

215

https://www.p4fpga.org

physical layers of the PCI express protocol. The PCI express block is parameterized to

include two virtual channels with Gen2 protocol support.

The FPGA design consists of multiple clock domains. A PCI express clock domain

contains direct memory access (DMA) engine and device management registers. The

Ethernet physical layer implementation uses a 644.53125 MHz clock which is derived

from a on-board programmable oscillator.

Overall, the FPGA firmware includes five major building blocks: PCI Express block,

DMA engine, circular packet ring buffers, parts of network physical layer and high-

speed transceivers. Among them, the PCI Express block and high-speed transceivers are

built-in functionalities in the FPGA, which requires additional configuration. The DMA

engine, circular buffer and physical layer design are written in Verilog and synthesized

to FPGA firmware.

D.2.2 PCI Express

Figure D.14 shows the configuration for SoNIC PCI Express block. The PCI Express

block can be created by entering the configuration through the Mega Wizard GUI or

through command line version of the same tool via a tcl script that contains the config-

uration key value pairs. In particular, we generated a PCI Express Gen 2.0 block for

Stratix IV GX device with 8 lanes. The total theoretical bandwidth is 32Gbps. The PCI

Express block exposes a 128-bit avalon streaming interface to FPGA application logic.

The host can communicate with the PCI Express block via a set of memory-mapped

control registers. We use all six available control register regions of the PCI Express

block. Base Address Register (BAR) 0-1 and 4-5 are used to implement a DMA channel.

Each DMA channel requires two Base Address Register (BAR) regions to implement

216

1 p_pcie_enable_hip=1,
2 p_pcie_number_of_lanes=x8,
3 p_pcie_phy=Stratix IV GX,
4 p_pcie_rate=Gen2 (5.0 Gbps),
5 p_pcie_txrx_clock=100 MHz,
6 p_pcie_app_signal_interface=AvalonST128
7 p_pcie_bar_size_bar_0="256 MBytes - 28 bits"
8 p_pcie_bar_size_bar_1="N/A"
9 p_pcie_bar_size_bar_2="256 KBytes - 18 bits"

10 p_pcie_bar_size_bar_3e="256 KBytes - 18 bits"
11 p_pcie_bar_size_bar_4="256 MBytes - 28 bits"
12 p_pcie_bar_size_bar_5="N/A"
13 p_pcie_bar_type_bar_0="64-bit Prefetchable Memory"
14 p_pcie_bar_type_bar_1="N/A"
15 p_pcie_bar_type_bar_2="32-bit Non-Prefetchable Memory"
16 p_pcie_bar_type_bar_3="32-bit Non-Prefetchable Memory"
17 p_pcie_bar_type_bar_4="64-bit Prefetchable Memory"
18 p_pcie_bar_type_bar_5e="N/A"
19 p_pcie_bar_used_bar_0e="1"
20 p_pcie_bar_used_bar_1="1"
21 p_pcie_bar_used_bar_2="1"
22 p_pcie_bar_used_bar_3="1"
23 p_pcie_bar_used_bar_4="1"
24 p_pcie_bar_used_bar_5="1"

Figure D.14: SoNIC PCI Express Configuration.

a 256MByte memory-mapped region. (line 7-8, line 11-12) SoNIC implemented two

DMA channels for the two Ethernet ports on board. BAR 2 and 3 are memory-mapped

regions of 256 bytes each. They are used to implement a register-based control interface

for each DMA channel. For example, the DMA descriptors are transmitted from host to

FPGA through these control registers.

The PCI root complex device connects the processor and memory subsystem to the

PCI Express switch fabric composed of one or more switch devices. A PCI root complex

is set to low speed configuration (2.5 GT/s on Dell T7500 workstation) by default. We

use the following commands to configure the PCI root complex to speed by setting the

configuration registers in the chipset. This configuration is necessary to run the PCI bus

217

at full bandwidth.

sudo setpci -v -G -s 00:03.0 C0.w=2:F //set target link speed to

5GT/s

sudo setpci -v -G -s 00:03.0 A0.b=20:20 //retrain link

D.2.3 Transceivers

The FPGA firmware implements the PMA and PMD sublayer of the 10GBase-R PHY.

(Appendix B) These sublayers are implemented using Altera transceivers. The Altera

transceiver data interface is 40 bits wide and has a throughput of 10312.5Mbps with a

transmit (TX) and receive (RX) clock rate of 257.8125MHz.

To generate the 10G PMA transceiver for Stratix IV, we used the Qsys flow in Al-

tera Quartus. [2] The design of a custom PHY is described in the Altera Transceiver

PHY IP Core user guide. We integrated a PMA-only transceiver, a register management

module and a reset controller to the transceiver design. The FPGA transceiver imple-

mented the transmit(TX) phase compensation FIFO, byte serializer on transmit path,

and the receive(RX) phase compensation FIFO, clock data recovery (CDR) circuitry,

byte deserializer on the receiving path. The TX phase compensation FIFO connects the

transmitter channel PCS and the FPGA fabric PCIe interface. It compensates for the

phase difference between the low-speed parallel clock and the FPGA fabric interface

clock. The byte serializer divides the input datapath by two. This allows the transceiver

channel to run at higher data rates while keeping the FPGA fabric interface at lower

frequency. On the receive path, the receiver channel has an independent CDR unit to

recover the clock from the incoming serial data stream. The high-speed and low-speed

218

recovered clocks are used to clock the receiver PMA and SoNIC application logic. The

deserializer block clocks in serial input data from the receiver buffer using the high-

speed serial-recovered clock and deserializes it using the low-speed parallel-recovered

clock. It forwards the deserialized data to the SoNIC application logic. The receiver

phase compensation FIFO ensures reliable transfer of data and status signals between

the receiver channel and the FPGA fabric. The receiver phase compensation FIFO com-

pensates for the phase difference between the parallel receiver PCS clock (FIFO write

clock) and the FPGA fabric clock (FIFO read clock).

Figure D.15 shows the configuration of Altera Stratix IV transceivers generated from

the Altera Megawizard tool. The transceiver is configured to operate in GT low-latency

mode. (line 4). The input bit width is 1 bit and the output bit width is 40 bit. (line 8). We

instantiated two lanes (line 6), with each lane operating at 10312.5 Mbps. (line 11). The

transceiver block is driven by a clock of 644.53125 MHz. (line 12). We used default

analog settings for the transceiver. (lines 29 to 40), but the settings can be updated at

runtime using a management interface running at 50MHz. (line 23).

D.2.4 DMA Engine

The high-speed DMA engine is capable of sustaining 32Gbps of raw throughput, which

was state-of-art at the time of implementation. The DMA engine implements a chaining

DMA native endpoint, which supports simultanenous DMA read and write transactions.

The write operations transmit data from the endpoint memory to the FPGA memory.

The read operation implements the data path from the FPGA memory to the endpoint

memory.

The chaining DMA engine uses a high-performance architecture that is capable of

219

1 altera_xcvr_low_latency_phy
2 #(
3 .device_family ("Stratix IV"),
4 .intended_device_variant ("GT"),
5 .operation_mode ("DUPLEX"),
6 .lanes (2),
7 .bonded_mode ("FALSE"),
8 .serialization_factor (40),
9 .pll_type ("CMU"),

10 .data_rate ("10312.5 Mbps"),
11 .base_data_rate ("10312.5 Mbps"),
12 .pll_refclk_freq ("644.53125 MHz"),
13 .bonded_group_size (1),
14 .select_10g_pcs (0),
15 .tx_use_coreclk (0),
16 .rx_use_coreclk (0),
17 .tx_bitslip_enable (0),
18 .tx_bitslip_width (7),
19 .rx_bitslip_enable (0),
20 .phase_comp_fifo_mode ("EMBEDDED"),
21 .loopback_mode ("SLB"),
22 .use_double_data_mode ("true"),
23 .mgmt_clk_in_mhz (50),
24 .gxb_analog_power ("AUTO"),
25 .pll_lock_speed ("AUTO"),
26 .tx_analog_power ("AUTO"),
27 .tx_slew_rate ("OFF"),
28 .tx_termination ("OCT_100_OHMS"),
29 .tx_preemp_pretap (0),
30 .tx_preemp_pretap_inv ("false"),
31 .tx_preemp_tap_1 (0),
32 .tx_preemp_tap_2 (0),
33 .tx_preemp_tap_2_inv ("false"),
34 .tx_vod_selection (2),
35 .tx_common_mode ("0.65V"),
36 .rx_pll_lock_speed ("AUTO"),
37 .rx_common_mode ("0.82V"),
38 .rx_termination ("OCT_100_OHMS"),
39 .rx_eq_dc_gain (1),
40 .rx_eq_ctrl (16),
41 .starting_channel_number (0),
42 .pll_refclk_cnt (1),
43 .plls (1)
44)

Figure D.15: SoNIC PMA Configuration.

220

transferring a large amount of fragmented memory without having to access the DMA

register for every memory block. The engine uses a descriptor table which contains the

length of the transfer, the address of the source and destination of the transfer, and the

control bits.

Before initiating a DMA transfer, the control software writes the descriptor tables

into the shared memory region between FPGA and host. After that, the control software

programs the DMA engine’s control register to inform the DMA engine about the total

number of descriptor tables and the memory address of the first descriptor table. After

programming the DMA control register, the DMA engine continously fetches descrip-

tors from the shared memory region for both the read and write operations, and then

performs the data transfer according to each descriptor.

Figure D.16 shows an example DMA descriptor table, which is stored in shared host

memory. It consists of four-dword descriptor header and a contiguous list of four-dward

descriptors. The chaining DMA engine iteratively fetches four-dword descriptors to

start a DMA transfer. After completion of a DMA transfer, it sends an update to the

host to record the number of descriptors completed to the descriptor header. The host

software can poll on the EPLAST field of the descriptor header to decide whether the

chain of DMA transfers have been completed.

A reference design of the DMA engine is generated using tools in Altera Quartus. [2]

D.2.5 Ring Buffer

The buffer implementation has been optimized for SoNIC. (Section 4.2.2). Ring buffers

are used as temporary buffer space for sent and received packets. They are required

221

Address
offset

Type Description

0x0

Header

Reserved

0x4 Reserved

0x8 Reserved

0xC

EPLAST, when enabled, this
location records the number of
the last descriptor completed

by the DMA engine

0x10

Descriptor 0

Control field, DMA Length

0x14 Endpoint address

0x18 RC address upper dword

0x1C RC address lower dword

0x20

Descriptor 1

Control field, DMA Length

0x24 Endpoint address

0x28 RC address upper dword

0x2C RC address lower dword

…

0x..0

Descriptor
<n>

Control field, DMA Length

0x..4 Endpoint address

0x..8 RC address upper dword

0x..C RC address lower dword

Figure D.16: SoNIC DMA Descriptor Format.

because of the data-rate mismatch between the DMA engine and the transceivers. The

DMA engine operates at 32Gbps throughput, which means the instantenous data transfer

rate of the DMA engine from the host to FPGA can be as fast as 32Gbps, and vice versa.

If there is no buffering between the DMA engine and the rest of the FPGA system, data

will be lost on the transmit path. Similarly, if there is no buffering on the receiving path,

packets may be dropped. The transmit ring buffer is written by the DMA engine and

read by the transceiver control block. The receive ring buffer is written by the transceiver

222

Vaddr Vaddr(bin) Paddr Paddr(bin) Types

0 0b0000000 0 0b0000000 First sync header byte
1 0b0000001 1 0b0000001 ...
2 0b0000010 2 0b0000010 ...
...
123 0b1111011 123 0b1111011 Last sync header byte
124 reserved
125 reserved
126 reserved
127 reserved
128 0b0000 1000 0000 0 0b0000 0000 0000 First data byte
...
4094
4095 0b1111 1111 1111 3967 0b1111 0111 1111 Last data byte

Table D.1: DMA Memory Page Layout

control block and read by the DMA engine.

The design of the ring buffer is a trade-off between DMA driver performance and

hardware control logic simplicity. In particular, the linux driver is optimized to request

data in 4KB pages through the DMA engine. Each address issued by DMA points to

128-bit data block, because the data width of the DMA engine is 128 bits. For 4KB

pages, this corresponds to 4096B/16B or 256 address offsets for each DMA transfer. To

further optimize software performance, memory access must be 64-bit aligned. We used

a customized memory page layout as shown in Table D.1.

For each 4KB memory page, the segment at the top of the page is used to store 2-

bit sync-headers for each 66-bit data in the PCS layer. The rest of the page stores data

blocks associated with the sync headers. As a result, in each memory page, 124 bytes

are used to store the sync headers, 3968 bytes are used to store data blocks and 4 bytes

are reserved. In total, 496 66-bit blocks are stored in a single page. The ring buffer

223

64

2

66

BlockSync
Ring

Buffer
Ctrl

128
DMA RX

128

12840

Rx Circular Ring

Figure D.17: Rx Circular Ring.

memory contains 8192 128-bit entries, which means it could store up to 32 pages.

Rx Ring Buffer Figure D.17 shows the design of Rx ring buffer, and how it is con-

nected to the BlockSync module on the network side and the DMA Rx module on the

host side. The Rx circular ring receives inputs from blocksync, which are 66-bit blocks

per cycle. It then outputs 128-bit blocks to the DMA engine. Therefore, the Rx ring

buffer is also called a 66-to-128 ring buffer.

Inside the 66-to-128 ring buffer, there are two smaller ring buffers. The first one is

the sync ring buffer, which is used to store sync-headers. It has a 2 bit-wide input

and 128 bit-wide output. The sync ring buffer needs 124/8 = 15.5 entries to store

all the sync headers. We round the space requirement up to 128 bytes or 16 128-bit

entries. The other ring buffer is the data ring buffer. It has 64 bit-wide input and 128

bit-wide output. The data ring is used to store the 64 bit data block associated with

each 2-bit sync-header in a 66-bit block.

In each DMA transaction, one page is requested, with sync headers stored in the

first 128 bytes. The valid sync headers are from byte 0 to byte 123. In addition, byte

128 to byte 4095 contain the correponding 64-bit data-block of the 66-bit block. As

previously metioned, each page fits 496 64-bit blocks, or 248 128-bit blocks, as shown

in the following example:

224

• Page 0

– 128 bytes of sync header from sync ring address [0:15].

– 3968 bytes of data block from data ring address [16:256].

• Page 1:

– 128 bytes of sync header from sync ring address [16:31].

– 3968 bytes of data block from data ring address [272:512].

• Page 2:

– 128 bytes of sync header from sync ring address [32:47].

– 3968 bytes of data block from data ring address [528:756].

• ...

• Page 31:

– 128 bytes of sync header from sync ring address [496:512].

– 3968 bytes of data block from data ring address [7944:8192].

Since it is possible to store up to 32 pages with the current ring buffer size, there

are 256 (8192 - 7936) 128-bit unused entries in the data ring memory. To align

things better, the unused entries of data ring memory are distributed sparsely in

each page. For example, the first 16 128-bit entries in the data ring memory are not

used, because they are shadowed by the sync header ring. We store the first entries

of 64-bit data block in entry 16 in the data ring buffer.

From the DMA engine point of view, the two rings (sync ring and data ring)

appear to be a single ring buffer. The address mapping from DMA address to ring

address is handled by the ring buffer control module.

225

128

128

128

Gearbox

Ring
Buffer
Ctrl

66DMA TX

2

64

TX Circular Ring

40

Figure D.18: Tx Circular Ring.

From the blocksync module point of view, the ring buffer is also a single entity,

because the 66-bit incoming block is split by the ring buffer control module, and the 2-

bit sync headers are stored in sync ring. 64-bit data blocks are stored in data ring.

From the driver’s perspective, it only issues DMA transactions if there is a full page

worth of data available in the Rx ring. As a result, the Rx ring buffer needs to indicate

to the driver the amount of available data in the unit of pages. The driver keeps track of

the available space in the ring buffer and specifies the proper DMA address offset to the

ring buffer during DMA transaction.

Tx Ring Buffer Figure D.18 shows the implementation of the transmit circular buffer.

Every DMA transaction transfers data in pages of 4096B to the Tx ring. The start

address of each page is used as offset into the Tx ring. For example, the first page starts

at offset 0x0, the second page starts at offset 0x100, the third page starts at offset 0x200

and the last page is at offset 0x1F00. The format of the memory page layout is the same

as the Rx ring, as shown in Table D.1. Each page has 496 or 0x1F0 entries. When

translating the read address 0x0 to the memory address of the data ring, 0x0 maps to

0x10 in the data ring, and 0x10 in the sync ring. The conversion is simple: first,

the bit address of the sync header i in the page is computed as 32 + 2i, since the first

sync header starts at bit offset 32. The bit address of the data block i in the page is

(32 + 2i) ∗32, since the first data block starts at bit offset 1024. The read address to sync

226

ring is (32 + 2i)/2 or 16 + i. The read address to data ring is (32 + 2i) ∗ 32/64 or 16 + i.

Therefore, the addresses to index the sync and data ring are always the same.

The external circuitry does not observe the offset in the sync/data ring. Therefore,

when a read request to address 0 arrives at the tx ring, a ring buffer control block trans-

lates the external address 0 to internal address 0x10. The external address 0x1F0 is

translated to internal address 0x200. Symbolically, the address translation unit imple-

ments the following:

external address + 16 ∗ pagenumber = internal address

Tx ring waits for an entire page to be received, before it sends the data to the network.

The delay of sending packets is at most the time it takes to send a page-worth of data

from the host to the Tx ring.

D.2.6 BlockSync and Gearbox

BlockSync In the ingress direction, the block synchronization (blockSync) is respon-

sible for identifying and locking on each of the 66-bit blocks in the bit stream using the

sync headers. The physical layer transmits data in blocks of 66 bits. The first two bits of

a block are the synchronization header. Blocks are either data blocks or control blocks.

The sync header is 01 for data blocks and 10 for control blocks. Lock is obtained as

specified in the block lock state machine shown in Figure D.19.

The implementation of the blocksync state machine is shown in Figure D.20 and

Figure D.21. When system reset is asserted, or the transceiver signal is invalid, the

blocksync state machine enters the init state LOCK INIT. As soon as the link status be-

comes ready, the blocksync state machine performs an unconditional transition (UCT)

227

block_lock <= false
test_sh <= false

LOCK_INIT

reset +
!signal_ok

sh_cnt <= 0
sh_invalid_cnt <= 0
slip_done <= false

RESET_CNT

test_sh <= false

TEST_SH

sh_cnt ++

VALID_SH

block_lock <= true

64_GOOD

sh_cnt ++
sh_invalid_cnt++

INVALID_SH

block_lock <= false
SLIP

SLIP

!sh_validsh_valid

test_sh *
sh_cnt < 64

sh_cnt = 64 *
sh_invalid_cnt > 0

sh_cnt = 64 *
sh_invalid_cnt < 16

* block_lock

sh_cnt = 64 *
sh_invalid_cnt = 0

UCT
slip_done

test_sh * sh_cnt < 64 *
sh_invalid_cnt < 16 *

block_lock

UCT

test_sh

Figure D.19: BlockSync State Machine.

to state RESET CNT. The RESET CNT state resets three state variables to their initial

values (lines 11 to 14 in Figure D.20). Next, the test sh boolean variable that is set

true when a new sync header is available for testing, and false when TEST SH state is

entered. If the received block has valid sync header bits, the sh valid boolean indica-

tion is true, and the state machine transits to the VALID SH state. Otherwise, the state

machine transits to the INVALID SH state. In the VALID SH state, the count of the

number of sync headers checked within the current 64 block window is incremented.

If the count is less than 64, then state machine returns to TEST SH state, and exam-

ines the next data block. If the count is equal to 64, and the count of the number of

228

1 /* output depends on state */
2 always @ (posedge clk) begin
3 case (state)
4 LOCK_INIT: begin
5 block_lock = 0;
6 offset = 0;
7 test_sh = 0;
8 end
9

10 RESET_CNT: begin
11 sh_cnt = 0;
12 sh_invalid_cnt = 0;
13 slip_done = 0;
14 test_sh = valid;
15 end
16
17 TEST_SH: begin
18 test_sh = 0;
19 end
20
21 VALID_SH: begin
22 sh_cnt = sh_cnt + 1;
23 test_sh = valid;
24 end
25
26 INVALID_SH: begin
27 sh_cnt = sh_cnt + 1;
28 sh_invalid_cnt = sh_invalid_cnt + 1;
29 test_sh = valid;
30 end
31
32 GOOD_64: begin
33 block_lock = 1;
34 test_sh = valid;
35 end
36
37 SLIP: begin
38 if (offset >= 66) offset = 0;
39 else offset = offset + 1;
40 slip_done = 1;
41 block_lock = 0;
42 test_sh = valid;
43 end
44 endcase // case (state)
45 end

Figure D.20: BlockSync State Machine Output Transition.

229

1 /* determine next state */
2 always @ (posedge clk or posedge reset) begin
3 if (reset) begin
4 state <= LOCK_INIT;
5 end
6 else begin
7 case (state)
8 LOCK_INIT:
9 state <= RESET_CNT;

10 RESET_CNT:
11 if (test_sh) state <= TEST_SH;
12 TEST_SH:
13 if (sh_valid) state <= VALID_SH;
14 else state <= INVALID_SH;
15 VALID_SH:
16 if (test_sh & (sh_cnt < 64)) begin
17 state <= TEST_SH;
18 end
19 else if (sh_cnt == 64 & sh_invalid_cnt == 0) begin
20 state <= GOOD_64;
21 end
22 else if (sh_cnt == 64 & sh_invalid_cnt > 0) begin
23 state <= RESET_CNT;
24 end
25 INVALID_SH:
26 if (sh_cnt == 64 & sh_invalid_cnt < 16 &

block_lock) begin
27 state <= RESET_CNT;
28 end
29 else if (sh_invalid_cnt==16|!block_lock) begin
30 state <= SLIP;
31 end
32 else if (test_sh & sh_cnt < 64 & sh_invalid_cnt <

16 & block_lock) begin
33 state <= TEST_SH;
34 end
35 GOOD_64:
36 state <= RESET_CNT;
37 SLIP:
38 if (slip_done) state <= RESET_CNT;
39 endcase // case (state)
40 end
41 end

Figure D.21: BlockSync State Machine Next State Computation.

230

invalid sync headers within the current 64 block window is larger than 0, then the state

machine transits to RESET CNT state to restart a new 64 block window. Lastly, if 64

consecutive valid sync headers are received, and there are no invalid sync headers in

the 64 block window, the state machine has successfully locked to the bit stream, the

block lock signal is set to true, and the state machine restarts a new 64 block win-

dow. If the TEST SH state transits to INVALID SH state, the count of the number of

invalid sync headers within the current 64 block window is incremented. If the total

number of sync headers is 64 and the number of invalid sync header is less than 16

and the previous 64 block window has successfully locked the bit stream, then the state

machine transits to TEST SH state. Otherwise, if the current 64 block window has not

filled and the number of invalid sync header is less than 16 and the previous 64 block

window has locked on the bit stream, then the state machine transits to TEST SH state.

Finally, the state machine releases the lock on the bit stream and shifts to a new offset

in the bit stream to verify the sync header validity.

Gearbox 10G Ethernet data is 64B/66B encoded in the egress direction and 66B/64B

decoded in the ingress direction. Each data block from or into the PCS block is 66 bits

wide. When configured at 10.3125 Gbps for 10G Ethernet, the Stratix IV GT transceiver

channel supports a parallel data width of 40 bits.

In the egress direction, the gearbox logic is responsible for translating each 66 bit-

wide data block from the PCS into 40 bit-wide data to the Stratix IV GT transmitter

channel. In the ingress direction, the gearbox logic is responsible for translating the 40

bit-wide data from each Stratix IV GT receiver channel into 66 bit-wide data to the PCS.

The 40-bit-to-66-bit gearbox implementation consists of two shift registers: SR0 and

SR1. Each shift register is 66 bits wide. Figure D.22 shows the logic for implementing

231

1 |St| SR0 (66 bits) | SR1 (66 bits) |V|
2 0 ----------------------------[39 0] 0
3 1 --------[13 0] [65 40][39 0] 1
4 2 ------------------------[53 14][13 0] 0
5 3 -----[27 0] [65:54][53 14][13 0] 1
6 4 -----------[1:0] [65 28][27 0] 1
7 5 ---------------------------[41 2][1:0] 0
8 6 -------[15 0] [65 42][41 2][1:0] 1
9 7 ------------------------[55 16][15 0] 0

10 8 ------[29 0] [65:56][55 16][15 0] 1
11 9 -----------[3:0] [65 30][29 0] 1
12 10 ------------------------[43 4][3 0] 0
13 11 --- [17 0] [65 44][43 4][3 0] 1
14 12 ------------------------[58 18][17 0] 0
15 13 -----[31 0] [65 58][57 18][17 0] 1
16 14 ---------- [5:0] [65 32][31 0] 1
17 15 -------------------------[45 6][5 0] 0
18 16 -------[19 0] [65 46][45 6][5 0] 1
19 17 ------------------------[59 20][19 0] 0
20 18 -----[33 0] [65 60][59 20][19 0] 1
21 19 -----------[7:0] [65 34][33 0] 1
22 20 ------------------------[47 8][7 0] 0
23 21 -------[21 0] [65 48][47 8][7 0] 1
24 22 --------------------[61 22][21 0] 0
25 23 -[35 0] [65:62][61 22][21 0] 1
26 24 ---------[9 0] [65 36][35 0] 1
27 25 ----------------------[49 10][9 0] 0
28 26 -------[23 0] [65 50][49 10][9 0] 1
29 27 --------------------[63 24][23 0] 0
30 28 [37 0] [65:64][63 24][23 0] 1
31 29 --------[11 0] [65 38][37 0] 1
32 30 ----------------------[51 12][11 0] 0
33 31 ----[25 0] [65 52][51 12][11 0] 1
34 32 -----------------[65 26][25 0] 1

Figure D.22: 40 bit to 66 bit gearbox logic.

232

the 40-to-66 gearbox. The logic in Figure D.22 is implemented as a state machine,

identified with the number in the first column St. The state machine has 33 states, from

0 to 32. Each state generates a 66-bit output with a valid signal to represent whether the

data output is valid to use. Data enters the gearbox with LSB first. The data is shifted

to the left by the number of bits stored in SR1 and appended to SR1. The overflow bits

from SR1 are stored in SR0. When all 66 bits in SR1 contain received data, the stored

data is sent to output and remaining bits are shifted to the right by 66 bits.

The 66-bit-to-40-bit gearbox implementation consists of two registers: SR0 and

SR1. Figure D.23 shows the logic for implementing the 66-to-40 gearbox. The logic in

Figure D.23 is also implemented as a state machine with 33 states, identified with the

number in the first column St. The numbers in each row of Figure D.23 represent the

subset of bits in each register that are the valid output bits for this state. For example,

in state 0, the lower 40 bits in SR0, i.e. SR0[39:0] are the output bits of this state. The

66-to-40 gearbox generates valid output in every cycle. New data is always stored in

SR0. The data in SR0 and SR1 are shifted when the status variable sh is 1. In addition,

the gearbox can issue a read signal to buffer memory to read new data by setting the rd

signal to 1. When the state machine reaches state 32, the next state wraps around to state

0.

In summary, the SoNIC FPGA firmware implements a high performance DMA en-

gine that operates at Gen2.0 x8 speed. The DMA transfers data between the host and the

FPGA ring buffers at 32 Gbps, which is able to support two 10G Ethernet ports at line

rate. To optimize software performance, the DMA engine employs a custom memory

layout in host, as well as offloading part of the physical layer functionality to hardware,

e.g. gearbox and blocksync. Overall, the SoNIC FPGA firmware enables the capability

of processing every bit in physical layer in software, which enables the programmable

233

1 |St| sr0 (66 bits) | sr1 (66 bits) |rd|sh|
2 0 **[39 0] ************************** 1 1
3 1 *********[13 0] [65 40]************* 1 1
4 2 **************** *****[53 14]**** 0 0
5 3 *****[27 0] [65:54]******************* 1 1
6 4 ***********[1:0] [65 28]******* 1 1
7 5 **************** *********[41 2] 0 0
8 6 ********[15 0] [65 42]*************** 1 1
9 7 **************** ********[55 16]*** 0 0

10 8 *****[29 0] [65:56]******************* 1 1
11 9 ***********[3:0] [65 30]******** 1 1
12 10 **************** **********[43 4]*** 0 0
13 11 ******[17 0] [65 44]***************** 1 1
14 12 **************** ******[58 18]**** 0 0
15 13 ****[31 0] [65 59]****************** 1 1
16 14 ***********[5:0] [65 32]******** 1 1
17 15 **************** *********[45 6]*** 0 0
18 16 ***** [19 0] [65 46]***************** 1 1
19 17 **************** ******[59 20]***** 0 0
20 18 ****[33 0] [65 60]***************** 1 1
21 19 ***********[7:0] [65 34]************ 1 1
22 20 **************** *********[47 8]*** 0 0
23 21 ******[21 0] [65 48]***************** 1 1
24 22 **************** ******[61 22]***** 0 0
25 23 **[35 0] [65:62]******************* 1 1
26 24 ***********[9:0] [65 36]*********** 1 1
27 25 **************** *******[49 10]*** 0 0
28 26 *****[23 0] [65 50]***************** 1 1
29 27 **************** ***[63 24]****** 0 0
30 28 [37 0] [65:64] ****************** 1 1
31 29 **********[11:0] [65 38]*********** 1 1
32 30 **************** *******[51 12]*** 0 0
33 31 *****[25 0] [65 52]***************** 1 1
34 32 **************** [65 26]****** 0 0

Figure D.23: 66 bit to 40 bit gearbox logic.

234

PHY.

D.3 DTP Hardware Implementation

In this section, we describe DTP hardware implementation. We describe the hardware

platform, the implementation of the Physical Coding Sublayer (PCS) in FPGA, the DTP

protocol sublayer, and the control interface based on the Connectal framework.

D.3.1 Altera DE5

DTP uses the Terasic DE5-Net Stratix V GX FPGA Development Kit. [191] The DE5

platform contains four external 10G Small form-factor pluggable (SFP+) modules, and

a PCI Express 3.0 x8 edge connector. The DE5 platform has four Independent 550MHz

SRAM, with 18-bits data bus and 72Mbit for each SRAM. It also contains two Inde-

pendent DDR3 SODIMM Socket with up to 8GB 800 MHz or 4GB 1066 MHz for each

socket.

D.3.2 Physical Layer Implementation

As shown in Figure 4.28, the DTP hardware implementation consists of the standard

Ethernet PCS sublayer and DTP sublayer. The PCS sublayer consists of four building

blocks: encoder, decoder, scrambler and descrambler. Note, for SoNIC in Section 4 and

Appendix D.2, these four blocks of the PCS were implemented in software, but for DTP,

we implemented them in hardware. In hardware, all four blocks are implemented using

235

Bluespec language and synthesized to Altera FPGA using the Quartus FPGA design

suite.

Encoder and Decoder The encoder and decoder blocks implement 64b/66b line

code. The line code transforms 64-bit data to 66-bit line code to provide enough state

changes to allow reasonable clock recovery and facilitate alignment of the data stream

at the receiver. The encoder implements 64-bit to 66-bit conversion. The 66 bit entity is

made by prefixing one of two possible two-bit preambles to the 64 bits to be transmitted.

If the preamble is 01, the 64 bits are entirely data. If the preamble is 10, an eight-bit

type field follows, plus 56 bits of control information and/or data. The preambles 00

and 11 are not used, and generate an error if used. The input interface to encoder block

is the 10 Gigabit Media Independent Interface (XGMII) interface, which is a standard

interface between the MAC and PHY layer of 10 Gigabit Ethernet (10GbE). The XGMII

interface consists of 72 bits, where 64 of them are data bits and 8 of them are control

bits. The control bits are used to indicate whether the data bits are data block or control

block. The output interface of the encoder block is 66 bits wide and connected to the

DTP sublayer. The decoder block implements the reverse process of decoding a 66-bit

line code to 64-bit data. The input to the decoder block is from DTP sublayer, and the

output of decoder block is connected to MAC layer.

Scrambler and Descrambler The scrambler block converts an input string into a

seemingly random output string of the same length to avoid long sequences of bits of

the same value. Because of this, a scrambler is also referred to as a randomizer. The pur-

pose of scrambling is to enable accurate timing recovery on receiver equipment without

resorting to redundant line coding. It facilitates the work of a timing recovery circuit.

There can be many types of scramblers. For 10G Ethernet, we implemented the follow-

236

ing polynomial:

X = x58 + x39 + 1

The input to the scrambler is a 66-bit data block and the scrambler produces a scram-

bled data block of the same length. The data block may contain DTP timestamp mes-

sages. The descrambler performs the reverse process of descrambling a pseudo-random

data block. As a result, if a DTP message is embedded into a data block before scram-

bling, the same message will be recovered after descrambling at the receiver end.

DTP sublayer The DTP sublayer implements the DTP algorithm as shown in Algo-

rithm 3. The implementation of the algorithm contains two modules in two different

clock domains. The module on receive path (Rx module) is controlled by receiving

clock domain. The Rx module implements a multiplexer based on received data block

type. If a block is a data block type /D/ or any of the control block types except the idle

type /E/, then the block is forwarded as is. However, if the data block is of type /E/,

the received block is further processed by the received module as a DTP message. If a

valid DTP message is found, the associated timestamp will be extracted and forwarded

to the DTP logic on the transmission path. (Tx module). The Tx module performs two

tasks. First, it computes the local timestamp by comparing the timestamp received from

Rx module with the local timestamp, and selects the maximum value to update the local

timestamp. Second, the Tx module inserts a local timestamp to a DTP message to trans-

mit to the remote node. Further, if a Tx module is used in a DTP-enabled switch, the

module will guarantee all ports share the same timestamps by computing the maximum

of local timestamps from all ports, and using the maximum value as global timestamp.

237

D.3.3 Control Interface

The DTP sublayer is accessible from host for debugging and management. We used

Connectal [96] (see Appendix C.2) to implement a set of APIs to interact with DTP sub-

layer. For example, the user can configure the rate at which clock synchronization mes-

sages are exchanged between two nodes by setting the dtp frequency counter via a

set frequencyAPI method. The user can also read the current state of DTP protocol

sublayer, the measured latency between two DTP-enabled ports, the local timestamp on

each DTP-enabled port, and the global timestamp in a DTP-enabled switch via get API

methods. Finally, the DTP timestamps are exposed to a userspace daemon to provide

the synchronized clock service to distributed applications.

D.3.4 Bluespec Implementation

We implemented the DTP PHY in Bluespec. Figure D.24 shows the top level module

for the DTP PHY. The top level module contains the instantiation of two sub-modules:

DTPController and EthPhy. The DTPController implements the control and

management interface for DTP PHY. The details about the control interface functions

are explained later. The EthPhy implements the physical layer datapath of 10G Eth-

ernet, including the encoder, decoder, scrambler, descrambler and the DTP sub-layer.

The physical layer communicates with the upper layer in the network stack through the

10G Media Independent Interface (XGMII). In this example, the Tx path of the XGMII

interface (line 19-21) transmits IDLE frame as encoded as an 72-bit constant number

in hexdecimal format. (0x83c1e0f0783c1e0f07). The Rx path of the XGMII interface

receives 72-bit every cycle, (lines 23-25), and the bits are dropped by default. If there

exists an MAC layer to generate Ethernet frames, the XGMII interfaces of the PHY will

238

1 ‘define IDLE_FRAME 0x83c1e0f0783c1e0f07
2
3 module mkDtpTop#(DtpIndication indication)(DtpTop);
4 Clock defaultClock <- exposeCurrentClock();
5 Reset defaultReset <- exposeCurrentReset();
6
7 De5Clocks clocks <- mkDe5Clocks();
8 De5SfpCtrl#(4) sfpctrl <- mkDe5SfpCtrl();
9 Clock txClock = clocks.clock_156_25;

10 Clock phyClock = clocks.clock_644_53;
11 Clock mgmtClock = clocks.clock_50;
12
13 Reset txReset <- mkAsyncReset(2, defaultReset, txClock);
14
15 DtpController dtpCtrl <- mkDtpController(indication,

txClock, txReset);
16 DtpPhyIfc dtpPhy <- mkEthPhy(mgmtClock, txClock, phyClock

, clocked_by txClock, reset_by dtp_rst);
17 mkConnection(dtpPhy.api, dtpCtrl.ifc);
18
19 rule send_idle_frame;
20 dtpPhy.phys.tx.put(IDLE_FRAME);
21 endrule
22
23 rule recv_idle_frame;
24 let v <- dtpPhy.phys.rx.get;
25 endrule
26
27 interface request = dtpCtrl.request;
28 interface pins = mkDE5Pins(defaultClock, defaultReset,

clocks, dtpPhy.phys, leds, sfpctrl, buttons);
29 endmodule

Figure D.24: DTP Top Level Module in Bluespec.

be connected to the corresponding XGMII interface of the MAC layer.

DTP Controller Figure D.25 shows the software to hardware interface definition.

Software can retrieve various status register values from the DTP sub-layer. For ex-

ample, dtp read delay (line 5) will return the measured latency between the local

DTP node to its neighboring DTP node. dtp read state will return the current state

239

1 interface DtpRequest;
2 method Action dtp_read_version();
3 method Action dtp_reset(Bit#(32) len);
4 method Action dtp_set_cnt(Bit#(8) port_no, Bit#(64) c);
5 method Action dtp_read_delay(Bit#(8) port_no);
6 method Action dtp_read_state(Bit#(8) port_no);
7 method Action dtp_read_error(Bit#(8) port_no);
8 method Action dtp_read_cnt(Bit#(8) cmd);
9 method Action dtp_logger_write_cnt(Bit#(8) port_no, Bit

#(64) local_cnt);
10 method Action dtp_logger_read_cnt(Bit#(8) port_no);
11 method Action dtp_read_local_cnt(Bit#(8) port_no);
12 method Action dtp_read_global_cnt();
13 method Action dtp_set_beacon_interval(Bit#(8) port_no,

Bit#(32) interval);
14 method Action dtp_read_beacon_interval(Bit#(8) port_no);
15 method Action dtp_debug_rcvd_msg(Bit#(8) port_no);
16 method Action dtp_debug_sent_msg(Bit#(8) port_no);
17 method Action dtp_debug_rcvd_err(Bit#(8) port_no);
18 method Action dtp_debug_tx_pcs(Bit#(8) port_no);
19 method Action dtp_debug_rx_pcs(Bit#(8) port_no);
20 method Action dtp_set_mode(Bit#(8) mode);
21 method Action dtp_get_mode();
22 endinterface

Figure D.25: DTP Control API definition in Connectal.

of the DTP state machine. The control interface also provides debugging functions to

the counters at different points in the datapath (lines 15-19) to monitor message perfor-

mance and loss rate. Finally, the control interface provides configuration functions the

control the behavior of the DTP state machine. For example, it can control the mode of

the DTP state machine (switch or NIC) (lines 20-21). The user can also configure the

frequency at which DTP messages are generated using the set beacon interval

command. (line 13). Most commands can be applied to one of the four DTP ports on

the FPGA board. Therefore, there is only one parameter to specify the port number.

Standard PHY functionalities Standard physical layer functionalities, such as en-

coder, decoder, scrambler and descrambler, are implemented in Bluespec for perfor-

240

init init_sent Synched
T0 T2

T3

T4

T1T1

Figure D.26: DTP State Machine.

mance reason. In particular, we need the datapath to perform at line rate (10Gbps) with

deterministic latency. Implementing the physical layer can be done in software at line

rate, as we have shown in SoNIC. But the end-to-end latency has too much variance for

the precise clock synchronization. In the interest of space, we will not show the source

code for these modules. We further note that these modules do not take part in the DTP

operation.

DTP state machine There are three states in the DTP state machine: INIT, SENT,

and SYNC, three of which are used in the initial phase to measure point-to-point latency

between two DTP-enabled PHYs. The state machine diagram is shown in Figure D.26.

Upon reset, the DTP state machine is initialized to INIT state. It will transition to SENT

state when the state machine has sent an INIT message to its neighbor, as shown in

Figure D.27. In the SENT state, the state machine will monitor the received data until it

receives an ACK message from the neighbor node. Upon receiving an ACK message, the

state machine will transit to SYNC state. Otherwise, the state machine will stay in SENT

state. (lines 1-15 in Figure D.28.) Finally, once the state machine arrives at SYNC state,

it will remain in SYNC state until a reset event. (lines 17-27 in Figure D.28.)

The beacon messages are sent periodically. The period is controlled by a register

sync timeout, which will increment every cycle until it reaches to a configurable

241

1 rule state_init (curr_state == INIT);
2 let init_type = fromInteger(valueOf(INIT_TYPE));
3 cfFifo.deq;
4 // update states
5 if (txMuxSelFifo.notEmpty && is_idle) begin
6 if (txMuxSelFifo.first == init_type) begin
7 curr_state <= SENT;
8 end
9 end

10 else begin
11 curr_state <= INIT;
12 end
13 endrule

Figure D.27: DTP INIT State Implementation.

1 rule state_sent (curr_state == SENT);
2 let init_type = fromInteger(valueOf(INIT_TYPE));
3 cfFifo.deq;
4
5 // update states
6 if (init_rcvd) begin
7 curr_state <= SENT;
8 end
9 else if (ack_rcvd) begin

10 curr_state <= SYNC;
11 end
12 else begin
13 curr_state <= SENT;
14 end
15 endrule
16
17 rule state_sync (curr_state == SYNC);
18 cfFifo.deq;
19
20 // update states
21 if (init_rcvd) begin
22 curr_state <= SYNC;
23 end
24 else begin
25 curr_state <= SYNC;
26 end
27 endrule

Figure D.28: DTP SENT State and SYNC State Implementation.

242

1 rule beacon(curr_state == SYNC);
2 dmFifo.deq;
3 let sync_timeout = interval_reg._read;
4 let beacon_type = fromInteger(valueOf(BEACON_TYPE));
5 let ack_type = fromInteger(valueOf(ACK_TYPE));
6 let rxtx_delay = fromInteger(valueOf(RXTX_DELAY));
7 if (timeout_count_sync >= sync_timeout-1) begin
8 if (is_idle) begin
9 timeout_count_sync <= 0;

10 end
11 else begin
12 timeout_count_sync <= timeout_count_sync + 1;
13 end
14 if (txMuxSelFifo.notFull) begin
15 txMuxSelFifo.enq(beacon_type);
16 end
17 end
18 else if (init_rcvd) begin
19 if (txMuxSelFifo.notFull) begin
20 txMuxSelFifo.enq(ack_type);
21 end
22 timeout_count_sync <= timeout_count_sync + 1;
23 end
24 else begin
25 timeout_count_sync <= timeout_count_sync + 1;
26 end
27 endrule

Figure D.29: DTP Beacon Message Generation.

time-out value. Upon time out, a beacon message will be generated and sent, and the

time out counter will be cleared. The logic for beacon message generation is shown in

Figure D.29.

The point-to-point delay is measured by subtracting the sent timestamp of a SYNC

message from the receive timestamp of the ACK message. The logic is shown in Fig-

ure D.30. In order to accurately measure the point-to-point, the computed timestamp

difference must be compensated by the internal delay of the DTP layer, as well as di-

vided by two. This is because the timestamp difference measures the round-trip time,

instead of one-way delay.

243

1 // delay measurement
2 rule delay_measurment(curr_state == INIT || curr_state ==

SENT);
3 let init_timeout = interval_reg._read;
4 let init_type = fromInteger(valueOf(INIT_TYPE));
5 let ack_type = fromInteger(valueOf(ACK_TYPE));
6 let rxtx_delay = fromInteger(valueOf(RXTX_DELAY));
7 dmFifo.deq;
8 // compute delay
9 if (ack_rcvd) begin

10 let temp <- toGet(ackTimestampFifo).get;
11 Bit#(53) tmp2 = zeroExtend(cycle);
12 delay <= (tmp2 - temp - 3) >> 1;
13 end
14 endrule

Figure D.30: DTP Delay Measurement Implementation.

Figure D.31 illustrates how DTP messages are inserted into the IDLE frame at the

transmit path. In particular, lines 10 to 27 show the implementation of inserting INIT,

ACK and BEACON messages into an IDLE frame. If an encoded frame is IDLE, then

part of the IDLE frame will be reused to carry DTP-specific fields, such as INIT mes-

sage, (line 14), ACK message, (line 19), or BEACON message, (line 22), otherwise, if

there is no DTP message to send, the encoded frame will be forwarded as is. (line 25).

In addition, the DTP transmit module also implements the ability to send LOG mes-

sages for monitoring purposes. Lines 29 to 40 implement the LOG message operation.

Host can send a timestamp through the DTP datapath to a collector using a special LOG

message type.

Figure D.32 shows the implementation of the receive path. The task of the receive

datapath is to parse the DTP messages and extract the associated fields, e.g. timestamps,

in the message. Lines 4 to 34 implement the parsing logic for each of the four types of

messages mentioned above. If an INIT message is received, the logic will extract the

timestamp embedded in the INIT message, and send the timestamp to the local DTP time

244

1 rule tx_stage;
2 let val <- toGet(stageOneFifo).get;
3 let v <- toGet(dtpTxInPipelineFifo).get();
4 let mux_sel = val.mux_sel;
5 let c_local = val.c_local;
6 let parity = val.parity;
7 Bit#(10) block_type;
8 Bit#(66) encodeOut; block_type = v[9:0];
9 if (mux_sel && txMuxSelFifo.notEmpty) begin

10 let sel = txMuxSelFifo.first;
11 if (sel == init_type) begin
12 Bit#(53) tmp = zeroExtend(cycle);
13 encodeOut = {tmp+1, parity, INIT_TYPE,

block_type};
14 end
15 else if (sel == ack_type) begin
16 let init_timestamp <- toGet(initTimestampFifo).

get;
17 let init_parity <- toGet(initParityFifo).get;
18 encodeOut = {init_timestamp, init_parity,

ACK_TYPE, block_type};
19 end
20 else if (sel == beacon_type) begin
21 encodeOut = {c_local+1, parity, BEACON_TYPE,

block_type};
22 end
23 else encodeOut = v;
24 txMuxSelFifo.deq;
25 end
26 else if (mux_sel && fromHostFifo.notEmpty) begin
27 let host_data = fromHostFifo.first;
28 debug_from_host <= host_data;
29 if (host_data[52] == 0) begin
30 Bit#(52) tmp = c_local[51:0] + 1;
31 encodeOut = {0, tmp, log_type, block_type};
32 end
33 else encodeOut = {host_data, LOG_TYPE, block_type};
34 fromHostFifo.deq;
35 end
36 else encodeOut = v;
37 dtpTxOutFifo.enq(encodeOut);
38 endrule

Figure D.31: DTP Transmit Path Implementation.

245

synchronization logic to compare with the local timestamp. Similarly, if a BEACON or

ACK message is received, the correponding timestamp will be sent to the handler logic

of such events.

Finally, the time synchronization logic simply computes the maximum value among

the global, local or remote timestamps for the switch mode, and computes the maximum

value among local or remote timestamps for the NIC mode. The implementation is

shown in Figure D.33.

In summary, the DTP sublayer consists of a state machine and message parsing and

generation logic, all of which can be concisely expressed in Bluespec. The resulting

implementation runs at 10Gbps and is capable of sending millions of synchronization

messages at no network layer overhead, and achieve 10s of nanosecond clock synchro-

nization precision.

246

1 rule rx_stage;
2 if (dtpEventInFifo.notEmpty) begin
3 let v <- toGet(dtpEventInFifo).get;
4 if ((v.e == INIT_TYPE)) begin
5 let parity = ˆ(v.t);
6 if (initTimestampFifo.notFull && initParityFifo.

notFull) begin
7 initTimestampFifo.enq(v.t);
8 initParityFifo.enq(parity);
9 end

10 init_rcvd_next = True;
11 end
12 else if (v.e == ACK_TYPE) begin
13 ack_rcvd_next = True;
14 // append received timestamp to fifo
15 if (ackTimestampFifo.notFull)
16 ackTimestampFifo.enq(v.t);
17 end
18 else if (v.e == BEACON_TYPE) begin
19 beacon_rcvd_next = True;
20 localCompareRemoteFifo.enq(c_local+1);
21 remoteCompareLocalFifo.enq(v.t+1);
22 if (is_switch_mode) begin
23 localCompareGlobalFifo.enq(c_local+1);
24 remoteCompareGlobalFifo.enq(v.t+1);
25 end
26 end
27 else if (v.e == LOG_TYPE) begin
28 log_rcvd_next = True;
29 if (toHostFifo.notFull) begin
30 toHostFifo.enq(v.t);
31 end
32 end
33 dtpEventFifo.enq(v.e);
34 end
35 else begin
36 dtpEventFifo.enq(0);
37 end
38 endrule

Figure D.32: DTP Receive Path Implementation.

247

1 rule compare_global_remote (is_switch_mode);
2 let global_delay = fromInteger(valueOf(GLOBAL_DELAY));
3 let v_global <- toGet(globalCompareRemoteFifo).get();
4 let v_remote <- toGet(remoteCompareGlobalFifo).get();
5 if (v_global + global_delay <= v_remote + delay) begin
6 globalLeRemoteFifo.enq(True);
7 globalGtRemoteFifo.enq(False);
8 end
9 else begin

10 globalLeRemoteFifo.enq(False);
11 globalGtRemoteFifo.enq(True);
12 end
13 globalOutputFifo.enq(v_global + 1);
14 endrule
15
16 rule compare_global_local (is_switch_mode);
17 let global_delay = fromInteger(valueOf(GLOBAL_DELAY));
18 let v_global <- toGet(globalCompareLocalFifo).get();
19 let v_local <- toGet(localCompareGlobalFifo).get();
20 if (v_global + global_delay <= v_local + 1) begin
21 globalLeLocalFifo.enq(True);
22 globalGtLocalFifo.enq(False);
23 end
24 else begin
25 globalLeLocalFifo.enq(False);
26 globalGtLocalFifo.enq(True);
27 end
28 endrule

Figure D.33: DTP Timestamp Comparison Logic.

248

APPENDIX E

GLOSSARY OF TERMS

Accuracy Closeness of a measured value to a standard or known value. In clock syn-

chronization, it is the closeness of a read time to a reference time. In available

bandwidth estimation, it is the closeness of an estimated bandwidth to the actual

bandwidth available. See also clock synchronizatoin and availabld bandwidth.

Available bandwidth The maximum data rate that a system can send down a network

path to another system without going over the capacity between the two.

Bit error rate (BER) The ratio of the number of bits incorrectly delivered from the

number of bits transmitted.

Bitstream A sequence of bits.

Clock domain crossing (CDC) delivering a signal from one clock comain into another

in a digital circuit.

Clock recovery In high-speed data communications such as Ethernet, bitstreams do

not carry clock signals. As a result, the receiving device recovers clock from

the transitions in the received bitstreams. There must be enough transitions (one

to zero or zero to one) for easier clock synchronization, which is achieved by

scrambler in Ethernet.

Clock skew The time difference between two clocks. See also offset.

Computer network A collection of computers and network devices that communicate

data via data links.

Covert channel A channel that is not intended for information transfer, but can leak

sensitive information.

Covert storage channel See also covert channel.

249

Covert timing channel See also covert channel.

Cut-through switch Switch starts forwarding a frame once the destination port is

known without checking CRC value. It does not store an entire frame before

forwarding. Switching latency is lower than store-and-forward switches. See also

Cyclic Redundancy Check.

Cyclic redundancy check (CRC) A check value that is computed from data and sent

along with data to detect data corruption at the receiver.

Datacenter A facility that consists of racks of servers and a network connecting servers

along with the physical infrastructure and power.

Device driver A computer program that controls a hardware device attached to a sys-

tem.

Direct memory access (DMA) Transfer of data in and out of main memory without

involving central processing unit.

Ethernet frame A unit of data in Ethernet See also Ethernet

Ethernet A family of standards specified in IEEE 802.3 that is used for data communi-

cation between network components in local area networks.

Field-programmable gate array (FPGA) An intergrated circuit that can be config-

ured and programmed after manufacture.

First in first out (FIFO) A data structure where the oldest entry is processed first.

Hardware timestamping See also timestamp.

Homogeneous packet stream See also interpacket delay, interpacket gap and network

packet.

Interpacket delay (IPD) The time difference the first bits of two successive packets.

250

Interpacket gap (IPG) The time difference between the last bit of the first packet and

the first bit of the next packet.

Kernel The core component of operating systems, managing systems resources and

hardware devices, providing interface to userspace programs for accessing system

resources.

Metastability An unstable state in a digital circuit where the state does not settle onto

’0’ or ’1’ within a clock cycle.

Network application A program running on one host that is communicating with other

programs running on other machines over a network.

Network component Network interface cards, switches, routers, any other devices that

build a network and send, receive or process network packets. See also computer

network and network packet

Network covert channel A network covert channel sends hidden messages over legit-

imate packets by modifying packet headers or by modulating interpacket delays.

See also covert channel.

Network device See network component

Network interface card (NIC) Device attached to a computer that connects the host

computer to a network.

Network measurement Measuring the amount and type of network traffic on a net-

work.

Network node Seenetwork component

Network packet A unit of data being transferred in a network.

Network switch Multi-port network device that forwards network packets to other net-

work devices at the data link layer (Layer 2). Some switches also support Layer 3

forwarding. See also network stack.

251

Network traffic Data being moved in a network.

Network See computer network.

Offset In clock synchronization, offset means the time difference between two clocks.

One way delay (OWD) The time it takes for a message to travel across a network from

source to destination.

Operating system (OS) A software that manages hardware and software resources and

provides abstractions and services to userspace programs.

Oscillator A circuit or device that generates a priodically oscillating signal.

Pacing Controlling time gaps between network packets.

Packet See network packet.

Peripheral component interconnect express (PCIe) A standard for serial communi-

cation bus between a computer and peripheral devices.

Peripheral device Hardware device that is attached to a computer.

Precision Closeness of two or more measurements to each other. In clock synchroniza-

tion, it is the degree to which clocks are synchronized, or the maximum offset

between any two clocks. In timestamping packets, it is the closeness of the times-

tamp to the actual time it was received. In pacing packets, it is the closeness of an

intended time gap to the actual time gap between two messages. See also offset,

timestamp, and pacing.

Process An instance of program that is being executed.

Robustness is how to deliver messages with minimum errors.

Round trip time (RTT) The sum of the length of time it takes for a request to be sent

and the length of time it takes for a response to be received.

252

Router Network device that forwards network packets to other network devices at the

network layer (Layer 3). See also network stack.

Store-and-forward switch Switch stores an entire frame, verifies CRC value, and for-

wards it to destination port. See also Cyclic Redundancy Check.

Symbol stream A sequence of symbols. See also bitstream and symbol.

Symbol A pulse in the communication channel that persists for a fixed period of time

and that represents some number of bits.

Synchronization FIFO A special FIFO that delivers data between two clock domains.

See also clock domain crossing and first-in-first-out.

System clock The number of seconds since the epoch (1 January 1970 00:00:00 UTC).

System time What a system clock reads. See also system clock

Time synchronization protocol A protocol that achieves clock synchronization in a

network.

Timeserver A server that reads the reference time from an atomic clock or a GPS re-

ceiver and distributes the time to other systems in a network.

Timestamp counter (TSC) A register in Intel processors that counts the number of

cycles since reset or boot.

Timestamp The time at which an event is recorded, such as when a packet is transmit-

ted or received.

Transceiver A device that can both transmit and receive signals.

Undetectability is how to hide the existence of a covert chennel.

Userspace All code that run outside the operating systems’ kernel. It includes programs

and libraries that provide interface to the operating system. See also operating

system and kernel

253

BIBLIOGRAPHY

[1] Altera. PCI Express High Performance Reference Design. http://www.
altera.com/literature/an/an456.pdf.

[2] Altera Quartus II. http://www.altera.com/products/software/
quartus-ii/subscription-edition.

[3] Altera Stratix IV FPGA. http://www.altera.com/products/
devices/stratix-fpgas/stratix-iv/stxiv-index.jsp.

[4] Amazon Web Services. http://amazonaws.com.

[5] Broadcom. http://http://www.broadcom.com/products/
Switching/Data-Center.

[6] Endace DAG Network Cards. http://www.endace.com/
endace-dag-high-speed-packet-capture-cards.html.

[7] Exablaze. https://exablaze.com/.

[8] Fibre Channel. http://fibrechannel.org.

[9] High Frequency sFlow v5 Counter Sampling. ftp://ftp.netperf.org/
papers/high_freq_sflow/hf_sflow_counters.pdf.

[10] Highly Accurate Time Synchronization with ConnectX-3 and Timekeeper.
http://www.mellanox.com/pdf/whitepapers/WP_Highly_
Accurate_Time_Synchronization.pdf.

[11] HiTech Global, LLC. http://hitechglobal.com.

[12] IEEE Standard 1588-2008. http://ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=4579757.

[13] IEEE Standard 802.3-2008. http://standards.ieee.org/about/
get/802/802.3.html.

[14] IEEE Standard 802.3-2008. http://standards.ieee.org/about/
get/802/802.3.html.

254

http://www.altera.com/literature/an/an456.pdf
http://www.altera.com/literature/an/an456.pdf
http://www.altera.com/products/software/quartus-ii/subscription-edition
http://www.altera.com/products/software/quartus-ii/subscription-edition
http://www.altera.com/products/devices/stratix-fpgas/stratix-iv/stxiv-index.jsp
http://www.altera.com/products/devices/stratix-fpgas/stratix-iv/stxiv-index.jsp
http://amazonaws.com
http://http://www.broadcom.com/products/Switching/Data-Center
http://http://www.broadcom.com/products/Switching/Data-Center
http://www.endace.com/endace-dag-high-speed-packet-capture-cards.html
http://www.endace.com/endace-dag-high-speed-packet-capture-cards.html
https://exablaze.com/
http://fibrechannel.org
ftp://ftp.netperf.org/papers/high_freq_sflow/hf_sflow_counters.pdf
ftp://ftp.netperf.org/papers/high_freq_sflow/hf_sflow_counters.pdf
http://www.mellanox.com/pdf/whitepapers/WP_Highly_Accurate_Time_Synchronization.pdf
http://www.mellanox.com/pdf/whitepapers/WP_Highly_Accurate_Time_Synchronization.pdf
http://hitechglobal.com
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4579757
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4579757
http://standards.ieee.org/about/get/802/802.3.html
http://standards.ieee.org/about/get/802/802.3.html
http://standards.ieee.org/about/get/802/802.3.html
http://standards.ieee.org/about/get/802/802.3.html

[15] Intel Westmere Processor. http://ark.intel.com/products/
codename/33174/Westmere-EP.

[16] Linux Programmer’s Manual. http://man7.org/linux/man-pages/
man7/netlink.7.html.

[17] Mellanox. www.mellanox.com.

[18] Myricom Sniffer10G. http://www.myricom.com/sniffer.html.

[19] sFlow, Version 5. http://www.sflow.org/sflow_version_5.txt.

[20] Stratix V FPGA. http://www.altera.com/devices/fpga/
stratix-fpgas/stratix-v/stxv-index.jsp.

[21] The CAIDA Anonymized Internet Traces. http://www.caida.org/
datasets/.

[22] Timekeeper. http://www.fsmlabs.com/timekeeper.

[23] Timing characteristics of a synchronous Ethernet equipment slave clock. http:
//www.itu.int/rec/T-REC-G.8262.

[24] Xilinx. http://www.xilinx.com/.

[25] IEEE 1588 PTP and Analytics on the Cisco Nexus 3548 Switch. http:
//www.cisco.com/c/en/us/products/collateral/switches/
nexus-3000-series-switches/white-paper-c11-731501.
html, 2014.

[26] Ameer M.S. Abdelhadi and Guy G.F. Lemieux. Modular SRAM-Based Bi-
nary Content-Addressable Memories. In Field-Programmable Custom Comput-
ing Machines (FCCM), 2015 IEEE 23rd Annual International Symposium on,
May 2015.

[27] AccelDSP Synthesis Tool. http://www.xilinx.com/tools/
acceldsp.htm.

[28] Mohammad Al-Fares, Rishi Kapoor, George Porter, Sambit Das, Hakim Weath-
erspoon, Balaji Prabhakar, and Amin Vahdat. Netbump: User-extensible ac-
tive queue management with bumps on the wire. In Proceedings of the Eighth

255

http://ark.intel.com/products/codename/33174/Westmere-EP
http://ark.intel.com/products/codename/33174/Westmere-EP
http://man7.org/linux/man-pages/man7/netlink.7.html
http://man7.org/linux/man-pages/man7/netlink.7.html
www.mellanox.com
http://www.myricom.com/sniffer.html
http://www.sflow.org/sflow_version_5.txt
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
http://www.caida.org/datasets/
http://www.caida.org/datasets/
http://www.fsmlabs.com/timekeeper
http://www.itu.int/rec/T-REC-G.8262
http://www.itu.int/rec/T-REC-G.8262
http://www.xilinx.com/
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-3000-series-switches/white-paper-c11-731501.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-3000-series-switches/white-paper-c11-731501.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-3000-series-switches/white-paper-c11-731501.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-3000-series-switches/white-paper-c11-731501.html
http://www.xilinx.com/tools/acceldsp.htm
http://www.xilinx.com/tools/acceldsp.htm

ACM/IEEE Symposium on Architectures for Networking and Communications
Systems, ANCS ’12, New York, NY, USA, 2012. ACM.

[29] Algorithms in Logic. www.algo-logic.com.

[30] Ahmed Ait Ali, Fabien Michaut, and Francis Lepage. End-to-End Available
Bandwidth Measurement Tools : A Comparative Evaluation of Performances.
arXiv.org, June 2007.

[31] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vah-
dat, and Masato Yasuda. Less is more: Trading a little bandwidth for ultra-low
latency in the data center. In Procs. NSDI, 2012.

[32] Mark Allman, Vern Paxson, and Ethan Blanton. Tcp congestion control. Techni-
cal report, 2009.

[33] Bilal Anwer, Theophilus Benson, Nick Feamster, Dave Levin, and Jennifer Rex-
ford. A slick control plane for network middleboxes. In Proceedings of the Sec-
ond ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking,
2013.

[34] Muhammad Bilal Anwer, Murtaza Motiwala, Mukarram bin Tariq, and Nick
Feamster. SwitchBlade: a platform for rapid deployment of network protocols
on programmable hardware. In Proceedings of the ACM SIGCOMM 2010 con-
ference, 2010.

[35] Axonerve. Axonerve Low Latency Matching Engine Synthesizable IP Core.

[36] Barefoot. Barefoot Networks. http://www.barefootnetworks.com/.

[37] Tim Berners-Lee, Roy Fielding, and Henrik Frystyk. Hypertext transfer protocol–
http/1.0. Technical report, 1996.

[38] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rex-
ford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David
Walker. P4: Programming protocol-independent packet processors. SIGCOMM
Comput. Commun. Rev., 44(3):87–95, July 2014.

[39] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rex-
ford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David
Walker. P4: Programming Protocol-Independent Packet Processors. SIGCOMM
Computer Communication Review (CCR), 44(3):87–95, July 2014.

256

www.algo-logic.com
http://www.barefootnetworks.com/

[40] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown,
Martin Izzard, Fernando Mujica, and Mark Horowitz. Forwarding Metamor-
phosis: Fast Programmable Match-Action Processing in Hardware for SDN. In
SIGCOMM Conference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communication (SIGCOMM), pages 99–110, August 2013.

[41] Gordon Brebner and Weirong Jiang. High-Speed Packet Processing using Re-
configurable Computing. IEEE/ACM International Symposium on Microarchi-
tecture, 34(1):8–18, January 2014.

[42] Broadcom. Ethernet time synchronization. http://www.broadcom.com/
collateral/wp/StrataXGSIV-WP100-R.pdf.

[43] Stephen Brown and Jonathan Rose. Architecture of fpgas and cplds: A tutorial.
IEEE Design and Test of Computers, 13(2):42–57, 1996.

[44] Mihai Budiu, Girish Venkataramani, Tiberiu Chelcea, and Seth Copen Goldstein.
Spatial computation. In ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages 14–26,
2004.

[45] Mike Burrows. The Chubby Lock Service for Loosely-Coupled Distributed Sys-
tems. In USENIX Symposium on Operating Systems Design and Implementation
(OSDI), pages 335–350, November 2006.

[46] Serdar Cabuk, Carla E. Brodley, and Clay Shields. IP covert timing channels:
Design and detection. In Proceedings of the 11th ACM conference on Computer
and communications security, 2004.

[47] Martin Casado. Reconfigurable networking hardware: A classroom tool. In Pro-
ceedings of Hot Interconnects 13, 2005.

[48] Ceph. http://ceph.com.

[49] Samarjit Chakraborty, Simon Künzli, Lothar Thiele, Andreas Herkersdorf, and
Patricia Sagmeister. Performance evaluation of network processor architec-
tures: Combining simulation with analytical estimation. Computer Networks,
41(5):641–665, 2003.

[50] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. Paxos Made Live:
An Engineering Perspective. In ACM Symposium on Principles of Distributed
Computing (PODC), pages 398–407, August 2007.

257

http://www.broadcom.com/collateral/wp/StrataXGSIV-WP100-R.pdf
http://www.broadcom.com/collateral/wp/StrataXGSIV-WP100-R.pdf
http://ceph.com

[51] John T. Chapman, Rakesh Chopra, and Laurent Montini. The DOCSIS timing
protocol (DTP) generating precision timing services from a DOCSIS system. In
Proceedings of the Spring Technical Forum, 2011.

[52] Bernadette Charron-Bost, Fernando Pedone, and Andre Schiper, editors. Replica-
tion: Theory and Practice, volume 5959 of Lecture Notes in Computer Science.
Springer, 2010.

[53] Corsa. Corsa DP6420 OpenFlow data plane. http://www.corsa.com/
products/dp6420.

[54] Flaviu Cristian. Probabilistic clock synchronization. Distributed Computing,
3:146–158, September 1989.

[55] Mark Crovella and Balachander Krishnamurthy. Internet Measurement: Infras-
tructure, Traffic and Applications. John Wiley and Sons, Inc, 2006.

[56] Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé. Paxos Made
Switch-y. SIGCOMM Computer Communication Review (CCR), 44:87–95, April
2016.

[57] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert
Soulé. NetPaxos: Consensus at Network Speed. In ACM SIGCOMM SOSR,
pages 59–73, June 2015.

[58] Matthew Davis, Benjamin Villain, Julien Ridoux, Anne-Cecile Orgerie, and Dar-
ryl Veitch. An IEEE-1588 Compatible RADclock. In Proceedings of Interna-
tional IEEE Symposium on Precision Clock Synchronization for Measurement,
Control and Communication, 2012.

[59] Stephen E Deering. Internet protocol, version 6 (ipv6) specification. 1998.

[60] Dell. PowerEdge R720 rack server. http://www.dell.com/us/dfb/p/
poweredge-r720/pd.

[61] Udit Dhawan and André Dehon. Area-efficient near-associative memories on
fpgas. ACM Trans. Reconfigurable Technol. Syst., 7(4):30:1–30:22, January 2015.

[62] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun, Kevin Fall,
Gianluca Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Ratnasamy.
Routebricks: exploiting parallelism to scale software routers. In Proc. SOSP,
2009.

258

http://www.corsa.com/products/dp6420
http://www.corsa.com/products/dp6420
http://www.dell.com/us/dfb/p/poweredge-r720/pd
http://www.dell.com/us/dfb/p/poweredge-r720/pd

[63] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun, Kevin Fall,
Gianluca Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Ratnasamy.
RouteBricks: exploiting parallelism to scale software routers. In Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles, 2009.

[64] DPDK. http://dpdk.org/.

[65] Nandita Dukkipati, Glen Gibb, Nick McKeown, and Jiang Zhu. Building a rcp
(rate control protocol) test network. In Hot Interconnects, volume 15, 2007.

[66] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul
Leach, and Tim Berners-Lee. Hypertext transfer protocol–http/1.1. Technical
report, 1999.

[67] Daniel A. Freedman, Tudor Marian, Jennifer H. Lee, Ken Birman, Hakim Weath-
erspoon, and Chris Xu. Exact temporal characterization of 10 Gbps optical wide-
area network. In Proceedings of the 10th ACM SIGCOMM conference on Internet
measurement, 2010.

[68] Steven Froehlich, Michel Hack, Xiaoqiao Meng, and Li Zhang. Achieving pre-
cise coordinated cluster time in a cluster environment. In Proceedings of Inter-
national IEEE Symposium on Precision Clock Synchronization for Measurement,
Control and Communication, 2008.

[69] Eli Gafni and Leslie Lamport. Disk Paxos. In Distributed Computing, LNCS,
pages 330–344, February 2000.

[70] Glen Gibb. Reconfigurable Hardware for Software-defined Networks. PhD thesis,
Stanford University, 2013.

[71] Peter Gomber, Björn Arndt, Marco Lutat, and Tim Uhle. High-frequency trading.
Available at SSRN 1858626, 2011.

[72] Vinodh Gopal, Erdinc Ozturk, Jim Guilford, Gil Wolrich, Wajdi Feghali, Martin
Dixon, and Deniz Karakoyunlu. Fast CRC computation for generic polynomials
using PCLMULQDQ instruction. White paper, Intel, http://download.
intel.com/design/intarch/papers/323102.pdf, December 2009.

[73] Gotthard: Moving Transaction Logic to the Switch. https://github.com/
usi-systems/gotthard.

[74] Albert Greenberg. Networking the cloud. In ICDCS, page 264, 2009.

259

http://dpdk.org/
http://download.intel.com/design/intarch/papers/323102.pdf
http://download.intel.com/design/intarch/papers/323102.pdf
https://github.com/usi-systems/gotthard
https://github.com/usi-systems/gotthard

[75] Shay Gueron and Michael E. Kounavis. Intel carry-less multiplication instruc-
tion and its usage for computing the GCM mode. White paper, Intel, http:
//software.intel.com/file/24918, January 2010.

[76] Cesar D. Guerrero and Miguel A. Labrador. On the applicability of available
bandwidth estimation techniques and tools. Computer Communication, 33(1):11–
22, January 2010.

[77] Riccardo Gusella and Stefano Zatti. The Accuracy of the Clock Synchronization
Achieved by TEMPO in Berkeley UNIX 4.3BSD. IEEE Transactions on Software
Engineering, 15(7):847–853, July 1989.

[78] Jong Hun Han, Prashanth Mundkur, Charalampos Rotsos, Gianni Antichi, Ni-
rav H. Dave, Andrew William Moore, and Peter G. Neumann. Blueswitch: En-
abling provably consistent configuration of network switches. In Proceedings of
the Eleventh ACM/IEEE Symposium on Architectures for Networking and Com-
munications Systems, ANCS ’15, pages 17–27, Washington, DC, USA, 2015.
IEEE Computer Society.

[79] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. PacketShader: a
GPU-accelerated software router. In Proceedings of the ACM SIGCOMM 2010
conference, 2010.

[80] Khaled Harfoush, Azer Bestavros, and John Byers. Periscope: An active internet
probing and measurement api. Technical report, Boston University Computer
Science Department, 2002.

[81] Ningning Hu, Li Erran Li, Zhuoqing Morley Mao, Peter Steenkiste, and Jia Wang.
Locating internet bottlenecks: algorithms, measurements, and implications. In
Proceedings of the ACM SIGCOMM 2004 Conference, 2004.

[82] Pter Hga, Attila Psztor, Darryl Veitch, and Istvn Csabai. Pathsensor: Towards
efficient available bandwidth measurement. In Proceedings of IPS-MoMe 2005,
2005.

[83] Zsolt István, David Sidler, Gustavo Alonso, and Marko Vukolić. Consensus
in a Box: Inexpensive Coordination in Hardware. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI), pages 103–115, March
2016.

[84] Manish Jain and Constantinos Dovrolis. Pathload: A measurement tool for end-
to-end available bandwidth. In In Proceedings of Passive and Active Measure-
ments (PAM) Workshop, pages 14–25, 2002.

260

http://software.intel.com/file/24918
http://software.intel.com/file/24918

[85] Manish Jain and Constantinos Dovrolis. Ten fallacies and pitfalls on end-to-end
available bandwidth estimation. In Proc. IMC, 2004.

[86] Raj Jain, , and Shawn A. Routhier. Packet trains: Measurements and a new model
for computer network traffic. IEEE Journal On Selected Areas in Communica-
tions, 4:986–995, 1986.

[87] Hao Jiang and Constantinos Dovrolis. Why is the internet traffic bursty in short
time scales? In Proc. SIGMETRICS, 2005.

[88] Guojun Jin and Brian L. Tierney. System capability effects on algorithms for
network bandwidth measurement. In Proceedings of the 3rd ACM SIGCOMM
Conference on Internet Measurement, IMC ’03, pages 27–38, New York, NY,
USA, 2003. ACM.

[89] Guojun Jin and Brian L. Tierney. System capability effects on algorithms for
network bandwidth measurement. In Proc. IMC, 2003.

[90] Lavanya Jose, Lisa Yan, George Varghese, and Nick McKeown. Compiling
packet programs to reconfigurable switches. In 12th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 15), pages 103–115, Oakland,
CA, May 2015. USENIX Association.

[91] Christoforos Kachris, Keren Bergman, and Ioannis Tomkos. Optical Intercon-
nects for Future Data Center Networks. Springer, 2013.

[92] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M. Voelker, and Amin
Vahdat. Chronos: Predictble low latency for data center applications. In Proceed-
ings of the ACM Symposium on Cloud Computing, 2012.

[93] Rishi Kapoor, Alex C. Snoeren, Geoffrey M. Voelker, and George Porter. Bullet
Trains: A Study of NIC Burst Behavior at Microsecond Timescales. In Proceed-
ings of the Ninth ACM Conference on Emerging Networking Experiments and
Technologies, 2013.

[94] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer
Rexford. Hula: Scalable load balancing using programmable data planes. In
Proc. ACM Symposium on SDN Research, 2016.

[95] Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait Dixit,
and Lawrence J Wobker. In-band network telemetry via programmable data-
planes. In ACM SIGCOMM Symposium on SDN Research (SOSR), 2015.

261

[96] Myron King, Jamey Hicks, and John Ankcorn. Software-driven hardware devel-
opment. In Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’15, New York, NY, USA, 2015. ACM.

[97] David Kirk. NVIDIA CUDA software and GPU parallel computing architecture.
In ISMM, volume 7, pages 103–104, 2007.

[98] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans
Kaashoek. The click modular router. ACM Trans. Comput. Syst., 2000.

[99] Ramana Rao Kompella, Kirill Levchenko, Alex C. Snoeren, and George Vargh-
ese. Every microsecond counts: tracking fine-grain latencies with a lossy dif-
ference aggregator. In Proceedings of the ACM SIGCOMM 2009 conference on
Data communication, 2009.

[100] Hermann Kopetz and Wilhelm Ochsenreiter. Clock synchronization in distributed
real-time systems. IEEE Transactions on Computers, 100(8):933–940, 1987.

[101] Hermann Kopetz and Wilhelm Ochsenreiter. Clock synchronization in distributed
real-time systems. IEEE Transactions on Computers, C-36:933–940, Aug 1987.

[102] Christos Kozanitis, John Huber, Sushil Singh, and George Varghese. Leaping
multiple headers in a single bound: Wire-speed parsing using the kangaroo sys-
tem. In Proceedings of the 29th Conference on Information Communications,
INFOCOM’10, Piscataway, NJ, USA, 2010. IEEE Press.

[103] James F Kurose. Computer networking: A top-down approach featuring the in-
ternet, 3/E. Pearson Education India, 2005.

[104] Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed Sys-
tem. Communications of the ACM (CACM), 21:558–565, July 1978.

[105] Leslie Lamport. The Part-Time Parliament. ACM Transactions on Computer
Systems (TOCS), 16:133–169, May 1998.

[106] Leslie Lamport. Paxos Made Simple. SIGACT, 32(4):18–25, December 2001.

[107] Leslie Lamport. Fast Paxos. Distributed Computing, 19:79–103, October 2006.

[108] Leslie Lamport and Mike Massa. Cheap Paxos. In IEEE International Conference
on Dependable Systems and Networks (DSN), June 2004.

262

[109] Leslie Lamport and P. M. Melliar-Smith. Byzantine Clock Synchronization. In
Proceedings of the Third Annual ACM Symposium on Principles of Distributed
Computing, 1984.

[110] Maciej Lapinski, Thomasz Wlostowki, Javier Serrano, and Pablo Alvarez. White
Rabbit: a PTP Application for Robust Sub-nanosecond Synchronization. In Pro-
ceedings of the International IEEE Symposium on Precision Clock Synchroniza-
tion for Measurement Control and Communication, 2011.

[111] Kang Lee, John C Eidson, Hans Weibel, and Dirk Mohl. Ieee 1588-standard for a
precision clock synchronization protocol for networked measurement and control
systems. In Conference on IEEE, volume 1588, page 2, 2005.

[112] Ki Suh Lee, Han Wang, Vishal Shrivastav, and Hakim Weatherspoon. Globally
synchronized time via datacenter networks. In Proceedings of the ACM confer-
ence on Special Interest Group on Data Communication, 2016.

[113] Ki Suh Lee, Han Wang, and Hakim Weatherspoon. SoNIC: Precise Realtime
Software Access and Control of Wired Networks. In Proceedings of the 10th
USENIX Symposium on Networked Systems Design and Implementation, 2013.

[114] Ki Suh Lee, Han Wang, and Hakim Weatherspoon. Phy covert channels: Can
you see the idles? In Proc. NSDI, 2014.

[115] Will E. Leland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wilson. On the
self-similar nature of Ethernet traffic (extended version). IEEE/ACM Transaction
on Networking, 2(1), February 1994.

[116] David Lewis, David Cashman, Mark Chan, Jeffery Chromczak, Gary Lai, Andy
Lee, Tim Vanderhoek, and Haiming Yu. Architectural enhancements in stratix
v. In Proceedings of the ACM/SIGDA international symposium on Field pro-
grammable gate arrays, pages 147–156. ACM, 2013.

[117] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng, Renqian Luo, Ningyi Xu,
Yongqiang Xiong, Peng Cheng, and Enhong Chen. Clicknp: Highly flexible and
high performance network processing with reconfigurable hardware. In Proceed-
ings of the 2016 Conference on ACM SIGCOMM 2016 Conference, SIGCOMM
’16, pages 1–14, New York, NY, USA, 2016. ACM.

[118] Han Li. IEEE 1588 time synchronization deployment for mobile backhaul in
China Mobile, 2014. Keynote speech in the International IEEE Symposium on
Precision Clock Synchronization for Measurement Control and Communication.

263

[119] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K.
Ports. Just say no to paxos overhead: Replacing consensus with network ordering.
In OSDI16, pages 467–483. USENIX Association, November 2016.

[120] Chiun Lin Lim, Ki Suh Lee, Han Wang, Hakim Weatherspoon, and Ao Tang.
Packet clustering introduced by routers: Modeling, analysis and experiments. In
Proceedings of the 48th Annual Conference on Information Sciences and Systems,
2014.

[121] Maciej Lipinski, Tomasz Wlostowski, Javier Serrano, Pablo Alvarez, Juan
David Gonzalez Cobas, Alessandro Rubini, and Pedro Moreira. Performance
results of the first White Rabbit installation for CNGS time transfer. In Proceed-
ings of the International IEEE Symposium on Precision Clock Synchronization
for Measurement Control and Communication, 2012.

[122] Xiliang Liu, Kaliappa Ravindran, Benyuan Liu, and Dmitri Loguinov. Single-hop
probing asymptotics in available bandwidth estimation: sample-path analysis. In
Proceedings of the 4th ACM SIGCOMM conference on Internet measurement,
2004.

[123] Xiliang Liu, Kaliappa Ravindran, Benyuan Liu, and Dmitri Loguinov. Single-hop
probing asymptotics in available bandwidth estimation: sample-path analysis. In
Proc. IMC, 2004.

[124] Xiliang Liu, Kaliappa Ravindran, and Dmitri Loguinov. Multi-hop probing
asymptotics in available bandwidth estimation: stochastic analysis. In Proceed-
ings of the 5th ACM SIGCOMM conference on Internet Measurement, 2005.

[125] Xiliang Liu, Kaliappa Ravindran, and Dmitri Loguinov. Multi-hop probing
asymptotics in available bandwidth estimation: stochastic analysis. In Proc. IMC,
October 2005.

[126] Yali Liu, Dipak Ghosal, Frederik Armknecht, Ahmad-Reza Sadeghi, Steffen
Schulz, and Stefan Katzenbeisser. Hide and seek in time: Robust covert tim-
ing channels. In Proceedings of the 14th European conference on Research in
computer security, 2009.

[127] Yali Liu, Dipak Ghosal, Frederik Armknecht, Ahmad-Reza Sadeghi, Steffen
Schulz, and Stefan Katzenbeisser. Robust and undetectable steganographic tim-
ing channels for i.i.d. traffic. In Proceedings of the 12th international conference
on Information hiding, 2010.

264

[128] John W. Lockwood, Nick McKeown, Greg Watson, Glen Gibb, Paul Hartke, Jad
Naous, Ramanan Raghuraman, and Jianying Luo. NetFPGA–an open platform
for gigabit-rate network switching and routing. In Proceedings of Microelectron-
ics Systems Education, 2007.

[129] Sridhar Machiraju. Theory and Practice of Non-Intrusive Active Network Mea-
surements. PhD thesis, EECS Department, University of California, Berkeley,
May 2006.

[130] Sridhar Machiraju and Darryl Veitch. A measurement-friendly network (mfn) ar-
chitecture. In Proceedings of the 2006 SIGCOMM Workshop on Internet Network
Management, 2006.

[131] Mallik Mahalingam, Dinesh Dutt, and Kenneth Duda. VXLAN: A Framework
for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks. VXLAN: A
Framework for Overlaying Virtualized Layer, 2, 2012.

[132] Enrique Mallada, Xiaoqiao Meng, Michel Hack, Li Zhang, and Ao Tang. Skew-
less Network Clock Synchronization. In Proceedings of the 21st IEEE Interna-
tional Conference on Network Protocols, 2013.

[133] Cao Le Thanh Man, G. Hasegawa, and M. Murata. Icim: An inline network mea-
surement mechanism for highspeed networks. In Proceedings of the 4th IEEE/I-
FIP Workshop on End-to-End Monitoring Techniques and Services, April 2006.

[134] James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs,
Charles Roxburgh, and Angela H Byers. Big data: The next frontier for innova-
tion, competition, and productivity. 2011.

[135] Tudor Marian, Ki Suh Lee, and Hakim Weatherspoon. Netslices: Scalable multi-
core packet processing in user-space. In Proceedings of the Eighth ACM/IEEE
Symposium on Architectures for Networking and Communications Systems, 2012.

[136] David Mazieres. Paxos Made Practical. Unpublished manuscript, January 2007.

[137] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peter-
son, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling
innovation in campus networks. ACM SIGCOMM Computer Communication Re-
view, 38(2):69–74, 2008.

[138] Bjrn. Melander, Mats Bjorkman, and Per Gunningberg. A New End-to-end Prob-

265

ing and Analysis Method for Estimating Bandwidth Bottlenecks. In Proceedings
of the IEEE Global Telecommunications Conference, 2000.

[139] Robert M. Metcalfe and David R. Boggs. Ethernet: Distributed packet switching
for local computer networks. Communications of the ACM, 19(7):395–404, 1976.

[140] Ryszard S Michalski, Jaime G Carbonell, and Tom M Mitchell. Machine learn-
ing: An artificial intelligence approach. Springer Science & Business Media,
2013.

[141] David L. Mills. Internet time synchronization: the network time protocol. IEEE
transactions on Communications, 39:1482–1493, October 1991.

[142] Mininet. http://mininet.org.

[143] Pedro Moreira, Javier Serrano, Tomasz Wlostowski, Patrick Loschmidt, and
Georg Gaderer. White Rabbit: Sub-Nanosecond Timing Distribution over Eth-
ernet. In Proceedings of the International IEEE Symposium on Precision Clock
Synchronization for Measurement Control and Communication, 2009.

[144] Jad Naous, David Erickson, Adam Covington, Guido Appenzeller, and Nick
McKeown. Implementing an OpenFlow switch on the NetFPGA platform. In
Proceedings of the 4th ACM/IEEE Symposium on Architectures for Networking
and Communications Systems, 2008.

[145] Netronome. FlowNIC. http://netronome.com/product/flownics/.

[146] Peter Newman, Greg Minshall, Tom Lyon, and Larry Huston. Ip switching and
gigabit routers. IEEE Communications magazine, 35(1):64–69, 1997.

[147] Rishiyur S. Nikhil and Kathy Czeck. BSV by Example. CreateSpace, 2010.

[148] NLR. National Lambda Rail. http://www.nlr.net/.

[149] Bill Ogden, Jose Fadel, and Bill White. IBM System Z9 109 Technical Introduc-
tion. July 2005.

[150] Brian Oki and Barbara H. Liskov. Viewstamped Replication: A General Primary-
Copy Method to Support Highly-Available Distributed Systems. In ACM Sympo-
sium on Principles of Distributed Computing (PODC), pages 8–17, August 1988.

[151] Open-NFP. http://open-nfp.org/.

266

http://mininet.org
http://netronome.com/product/flownics/
http://www.nlr.net/
http://open-nfp.org/

[152] Open vSwitch. http://www.openvswitch.org.

[153] OpenReplica. http://openreplica.org.

[154] P4. P4 Behavioral Model. https://github.com/p4lang/p4c-bm.

[155] P4. P4 Specification. http://p4.org/spec/.

[156] P4 Behavioral Model. https://github.com/p4lang.

[157] P4@ELTE. http://p4.elte.hu/.

[158] P4.org. http://p4.org.

[159] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda, Sylvia Rat-
nasamy, Luigi Rizzo, and Scott Shenker. E2: A framework for nfv applications.
In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP
’15, New York, NY, USA, 2015. ACM.

[160] Pavlos Papageorge, Justin McCann, and Michael Hicks. Passive aggressive mea-
surement with mgrp. SIGCOMM Computer Communication Review, 39(4):279–
290, August 2009.

[161] Attila Pásztor and Darryl Veitch. PC Based Precision Timing Without GPS. In
Proceedings of the ACM SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Systems, 2002.

[162] F. Pedone, A. Schiper, P. Urban, and D. Cavin. Solving Agreement Problems
with Weak Ordering Oracles. In European Dependable Computing Conference
(EDCC), pages 44–61, October 2002.

[163] Fernando Pedone and Andre Schiper. Optimistic Atomic Broadcast: A Pragmatic
Viewpoint. Theoretical Computer Science, 291:79–101, January 2003.

[164] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Ra-
jahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, et al. The design
and implementation of open vswitch. In 12th USENIX symposium on networked
systems design and implementation (NSDI 15), pages 117–130, 2015.

[165] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind Krishna-
murthy. Designing Distributed Systems Using Approximate Synchrony in Data

267

http://www.openvswitch.org
http://openreplica.org
https://github.com/p4lang/p4c-bm
http://p4.org/spec/
https://github.com/p4lang
http://p4.elte.hu/
http://p4.org

Center Networks. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 43–57, March 2015.

[166] Jon Postel. User datagram protocol. Technical report, 1980.

[167] Jon Postel. Internet protocol. 1981.

[168] Jon Postel. Rfc 792: Internet control message protocol. InterNet Network Work-
ing Group, 1981.

[169] Jon Postel and Joyce Reynolds. File transfer protocol. 1985.

[170] Ravi Prasad, Constantine Dovrolis, and Kathy Claffy. Bandwidth Estimation:
Metrics, Measurement Techniques, and Tools. Network, 2003.

[171] Ravi Prasad, Manish Jain, and Constantinos Dovrolis. Effects of interrupt coa-
lescence on network measurements. In Proceedings of Passive and Active Mea-
surements Workshop, 2004.

[172] Andrew Putnam, Adrian Caulfield, Eric Chung, and Derek Chiou. A reconfig-
urable fabric for accelerating large-scale datacenter services. In Proceeding of the
41st Annual International Symposium on Computer Architecuture (ISCA), pages
13–24. IEEE Press, June 2014.

[173] Vinay Ribeiro, Rudolf H. Riedi, Richard G. Baraniuk, Jiri Navratil, and Les Cot-
trell. pathChirp: Efficient Available Bandwidth Estimation for Network Paths. In
Proceedings of Passive and Active Measurements Workshop, 2003.

[174] Luigi Rizzo. Netmap: a novel framework for fast packet I/O. In Proceedings of
the 2012 USENIX conference on Annual Technical Conference, 2012.

[175] Robert R Schaller. Moore’s law: past, present and future. IEEE spectrum,
34(6):52–59, 1997.

[176] David Schneider. The Microsecond Market. IEEE Spectrum, 49(6):66–81, 2012.

[177] Fred B. Schneider. Understanding Protocols for Byzantine Clock Synchroniza-
tion. Technical Report TR87-859, Cornell University, August 1987.

[178] Fred B. Schneider. Implementing Fault-Tolerant Services Using the State Ma-
chine Approach: A Tutorial. ACM Computing Surveys (CSUR), 22:299–319,
December 1990.

268

[179] Muhammad Shahbaz, Sean Choi, Ben Pfaff, Changhoon Kim, Nick Feamster,
Nick McKeown, and Jennifer Rexford. Pisces: A programmable, protocol-
independent software switch. In SIGCOMM16, pages 525–538, 2016.

[180] Satnam Singh and David J. Greaves. Kiwi: Synthesis of fpga circuits from par-
allel programs. In Proceedings of the 2008 16th International Symposium on
Field-Programmable Custom Computing Machines, pages 3–12, 2008.

[181] Ahmed Sobeih, Michel Hack, Zhen Liu, and Li Zhang. Almost Peer-to-Peer
Clock Synchronization. In Proceedings of IEEE International Parallel and Dis-
tributed Processing Symposium, 2007.

[182] Joel Sommers and Paul Barford. An active measurement system for shared en-
vironments. In Proceedings of the 7th ACM SIGCOMM Conference on Internet
Measurement, 2007.

[183] Joel Sommers and Paul Barford. An active measurement system for shared envi-
ronments. In Proc. IMC, 2007, October 2007.

[184] Joel Sommers, Paul Barford, and Mark Crovella. Router primitives for pro-
grammable active measurement. In Proceedings of the 2Nd ACM SIGCOMM
Workshop on Programmable Routers for Extensible Services of Tomorrow, 2009.

[185] Joel Sommers, Paul Barford, and Walter Willinger. Laboratory-based Calibration
of Available Bandwidth Estimation Tools. Microprocessors and Microsystems,
31(4):222–235, 2007.

[186] Haoyu Song. Protocol-oblivious Forwarding: Unleash the Power of SDN
Through a Future-proof Forwarding Plane. In Workshop on Hot Topics in Soft-
ware Defined Networking, pages 127–132, August 2013.

[187] Carly Stoughton. Getting started with cisco nexus 9000 series switches in the
small-to-midsize commercial data center. 2015.

[188] Jacob Strauss, Dina Katabi, and Frans Kaashoek. A Measurement Study of Avail-
able Bandwidth Estimation Tools. In Proceedings of the ACM SIGCOMM 2003
Conference, 2003.

[189] Kun Tan, Jiansong Zhang, Ji Fang, He Liu, Yusheng Ye, Shen Wang, Yongguang
Zhang, Haitao Wu, Wei Wang, and Geoffrey M. Voelker. Sora: high performance
software radio using general purpose multi-core processors. In Proceedings of

269

the 6th USENIX symposium on Networked systems design and implementation,
2009.

[190] Lloyd S Tenny. Chicago mercantile exchange. The ANNALS of the American
Academy of Political and Social Science, 155(1):133–135, 1931.

[191] Terasic. DE5-Net FPGA Development Kit. http://de5-net.terasic.
com.

[192] Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson, and Kevin Gibbs. Iperf.
http://dast.nlanr.net/Projects/Iperf/.

[193] Tolly. IBM Bnt RackSwitch G8264: Competitive Performance Evaluations
vs. Cisco Systems, Inc. Nexus 5548P, Arista Networkrs 7148SX, and Ju-
niper Networks EX 4500. http://www.tolly.com/DocDetail.aspx?
DocNumber=211108, 2011.

[194] Robbert Van Renesse and Deniz Altinbuken. Paxos Made Moderately Complex.
ACM Computing Surveys (CSUR), 47(3):42:1–42:36, February 2015.

[195] Darryl Veitch, Satish Babu, and Attila Pàsztor. Robust Synchronization of Soft-
ware Clocks Across the Internet. In Proceedings of the 4th ACM SIGCOMM
Conference on Internet Measurement, 2004.

[196] Kashi Venkatesh Vishwanath and Amin Vahdat. Realistic and responsive network
traffic generation. In Proceedings of the ACM SIGCOMM, 2006.

[197] Kashi Venkatesh Vishwanath and Amin Vahdat. Evaluating distributed systems:
Does background traffic matter? In Proceedings of USENIX 2008 Annual Tech-
nical Conference, 2008.

[198] Rick Walker, Birdy Amrutur, and Tom Knotts. 64b/66b coding update.
grouper.ieee.org/groups/802/3/ae/public/mar00/walker_
1_0300.pdf.

[199] Walter Willinger, Murad S. Taqqu, Robert Sherman, and Daniel V. Wilson. Self-
similarity through high-variability: statistical analysis of Ethernet LAN traffic at
the source level. In Proceedings of the conference on Applications, technologies,
architectures, and protocols for computer communication, 1995.

[200] Paul Willmann, Jeffrey Shafer, David Carr, Aravind Menon, Scott Rixner, Alan L.
Cox, and Willy Zwaenepoel. Concurrent direct network access for virtual ma-

270

http://de5-net.terasic.com
http://de5-net.terasic.com
http://dast.nlanr.net/Projects/Iperf/
http://www.tolly.com/DocDetail.aspx?DocNumber=211108
http://www.tolly.com/DocDetail.aspx?DocNumber=211108
grouper.ieee.org/groups/802/3/ae/public/mar00/walker_1_0300.pdf
grouper.ieee.org/groups/802/3/ae/public/mar00/walker_1_0300.pdf

chine monitors. In Proceedings of the 2007 IEEE 13th International Symposium
on High Performance Computer Architecture, 2007.

[201] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
Google’s neural machine translation system: Bridging the gap between human
and machine translation. arXiv preprint arXiv:1609.08144, 2016.

[202] Yong Xia, Lakshminarayanan Subramanian, Ion Stoica, and Shivkumar Kalya-
naraman. One more bit is enough. SIGCOMM Computer Communication Review,
35(4):37–48, August 2005.

[203] Xilinx. SDNet. http://www.xilinx.com/products/
design-tools/software-zone/sdnet.html.

[204] Xilinx. Vivado Design Suite - HLx Editions. https://www.xilinx.com/
products/design-tools/vivado.html.

[205] Xilinx. Xilinx Virtex-7 FPGA. https://www.xilinx.com/products/
silicon-devices/fpga/virtex-7.html.

[206] Tatu Ylonen and Chris Lonvick. The secure shell (ssh) protocol architecture.
2006.

[207] Takeshi Yoshino, Yutaka Sugawara, Katsushi Inagami, Junji Tamatsukuri, Mary
Inaba, and Kei Hiraki. Performance optimization of TCP/IP over 10 gigabit Eth-
ernet by precise instrumentation. In Proceedings of the 2008 ACM/IEEE confer-
ence on Supercomputing, 2008.

[208] Curtis Yu, Cristian Lumezanu, Yueping Zhang, Vishal Singh, Guofei Jiang, and
Harsha V. Madhyastha. Flowsense: Monitoring network utilization with zero
measurement cost. In Proceedings of Passive and Active Measurements Work-
shop, 2013.

[209] Ryan Zarick, Mikkel Hagen, and Radim Bartos. Transparent clocks vs. enter-
prise ethernet switches. In Proceedings of the International IEEE Symposium on
Precision Clock Synchronization for Measurement, Control and Communication,
2011.

[210] Hongyi Zeng, John W. Lockwood, Adam Covington, and Alexander Tudor. AirF-
PGA: A software defined radio platform based on NetFPGA. In NetFPGA De-
velopers Workshop, 2009.

271

http://www.xilinx.com/products/design-tools/software-zone/sdnet.html
http://www.xilinx.com/products/design-tools/software-zone/sdnet.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html

[211] Noa Zilberman, Yury Audzevich, Adam Covington, and Andrew W Moore.
NetFPGA SUME: Toward 100 Gbps as Research Commodity. IEEE Micro,
34:32–41, September 2014.

[212] Hubert Zimmermann. Osi reference model–the iso model of architecture for open
systems interconnection. IEEE Transactions on communications, 28(4):425–432,
1980.

272

	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Network Dataplane Programming
	Problems with Existing Network Dataplanes
	The Rise of Programmable Network Dataplanes
	Challenges in the Programmable Dataplane Design
	Lack of Programmable Network Dataplanes: Packet Processing Pipeline
	Lack of Programmable Network Dataplanes: Network Interface

	Contributions Towards a Programmable Network Dataplane
	Organization

	Scope and Methodology
	Scope: Understanding the Network Dataplane
	Dataplane Programming
	Network Protocol Stack
	Fast and Flexible Packet Processors
	Precise Packet Timing Control with a Programmable PHY

	Methodology
	Systems
	Evaluation

	Summary

	Towards a Programmable Network Dataplane: P4FPGA and Programmable Packet Processing Pipelines
	Background
	Design
	Programmable Pipeline
	Fixed-Function Runtime
	Control Plane API
	Extension

	Implementation
	Optimization
	Prototype

	Evaluation
	Case Studies
	Microbenchmarks

	Application: Hardware Accelerated Consensus Protocol
	Background
	Design
	Discussion

	Summary

	Towards a Programmable Network Dataplane: SoNIC and Programmable PHYs
	Design
	Access to the PHY in software
	Realtime Capability
	Scalability and Efficiency
	Precision
	User Interface
	Discussion

	Implementation
	Software Optimizations
	Hardware Optimizations

	Evaluation
	Packet Generator
	Packet Capturer
	Profiler

	Application: Measuring Available Bandwidth
	Background
	Design
	Implementation
	Evaluation

	Application: Precise Clock Synchronization
	Background
	Design
	Implementation
	Evaluation

	Summary

	Related Work
	Programming Network Elements
	Hardware
	Software
	Language

	Network Applications
	Consensus Protocol
	Timestamping
	Bandwidth Estimaton
	Clock Synchronization

	Future Direction
	Rack-scale Computing
	Scaling to 100G
	Packet Scheduling
	Distributed and Responsive Network Control Plane

	Conclusions
	Network Concepts
	Networking Basic Terminology
	Network Layering Model
	Packet Encapsulation
	Switch and Router

	IEEE 802.3 Standard
	Language and Frameworks
	Bluespec System Verilog
	Connectal Framework
	Top level structure of Connectal applications
	Development Cycles

	FPGA Implementation
	P4FPGA Hardware Implementation
	NetFPGA SUME
	Hardware Software Interface
	Packet Processing Pipeline Templates
	Code Generation

	SoNIC Hardware Implementation
	Hardware Overview
	PCI Express
	Transceivers
	DMA Engine
	Ring Buffer
	BlockSync and Gearbox

	DTP Hardware Implementation
	Altera DE5
	Physical Layer Implementation
	Control Interface
	Bluespec Implementation

	Glossary of Terms
	Bibliography

