
Optimal Oblivious Reconfigurable Networks
Daniel Amir

∗

Cornell University

Ithaca, New York, USA

Tegan Wilson
∗

Cornell University

Ithaca, New York, USA

Vishal Shrivastav
∗

Purdue University

West Lafayette, Indiana, USA

Hakim Weatherspoon
∗

Cornell University

Ithaca, New York, USA

Robert Kleinberg
∗

Cornell University

Ithaca, New York, USA

Rachit Agarwal
∗

Cornell University

Ithaca, New York, USA

ABSTRACT
Oblivious routing has a long history in both the theory and practice

of networking. In this work we initiate the formal study of oblivious

routing in the context of reconfigurable networks, a new architec-

ture that has recently come to the fore in datacenter networking.

These networks allow a rapidly changing bounded-degree pattern

of interconnections between nodes, but the network topology and

the selection of routing paths must both be oblivious to the traffic

demand matrix. Our focus is on the trade-off between maximizing

throughput and minimizing latency in these networks. For every

constant throughput rate, we characterize (up to a constant factor)

the minimum latency achievable by an oblivious reconfigurable

network design that satisfies the given throughput guarantee. The

trade-off between these two objectives turns out to be surprisingly

subtle: the curve depicting it has an unexpected scalloped shape

reflecting the fact that load-balancing becomes more difficult when

the average length of routing paths is not an integer because equal-

izing all the path lengths is not possible. The proof of our lower

bound uses LP duality to verify that Valiant load balancing is the

most efficient oblivious routing scheme when used in combination

with an optimally-designed reconfigurable network topology. The

proof of our upper bound uses an algebraic construction in which

the network nodes are identified with vectors over a finite field,

the network topology is described by either the elementary basis

or a sequence of Vandermonde matrices, and routing paths are

constructed by selecting columns of these matrices to yield the

appropriate mixture of path lengths within the shortest possible

time interval.

CCS CONCEPTS
• Theory of computation → Network flows; • Networks →
Network design principles; Network algorithms.

∗
Author order was randomized with students placed before professors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

STOC ’22, June 20–24, 2022, Rome, Italy
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9264-8/22/06. . . $15.00

https://doi.org/10.1145/3519935.3520020

KEYWORDS
Oblivious routing, reconfigurable networks, valiant load balancing,

circuit-switched networks

ACM Reference Format:
Daniel Amir, TeganWilson, Vishal Shrivastav, HakimWeatherspoon, Robert

Kleinberg, and Rachit Agarwal. 2022. Optimal Oblivious Reconfigurable

Networks. In Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing (STOC ’22), June 20–24, 2022, Rome, Italy. ACM, New

York, NY, USA, 14 pages. https://doi.org/10.1145/3519935.3520020

1 INTRODUCTION
Oblivious routing has a long history in both the theory and practice

of networking. By design, an oblivious routing scheme forwards

data along a fixed path (or distribution over paths) designed to

provide good performance across a wide range of possible traf-

fic demand matrices. Past theoretical work on oblivious routing

schemes focused on their ability to approximate the congestion of

the optimal multicommodity flow, culminating in Räcke’s discov-

ery [22] of oblivious routing schemes for general networks that

are guaranteed to approximate the optimum congestion within a

logarithmic factor in the worst case. However, thus far, oblivious

routing has only been studied in the context of static networks,

where the edges in the network are fixed at the beginning and do

not change over time. Recent works in datacenter network archi-

tecture [8, 9, 17–20, 23, 27] have advanced reconfigurable networks
as a promising direction. A reconfigurable network is defined as

a 𝑑-regular network with 𝑁 nodes (or hosts) where the edges (or

links) between the nodes can be reconfigured (or rearranged) very

rapidly over time. Early designs of reconfigurable networks for

datacenters [8, 17, 27] relied on predictable traffic demand matrices

to choose optimal edge configurations and routes for sending data

between nodes. However, more recent works [18, 19, 23] in this

space have made a case that traffic demand matrices in datacenters

are highly unpredictable and change at very fine time granularities,

making it challenging, if not impossible, to accurately track the

demand matrix at any given time. To overcome this fundamental

challenge, recent works have advocated for edge configuration and

route selection mechanisms that are oblivious to traffic demand ma-

trices. In this paper, we make the first attempt to formally study the

problem of oblivious routing in the novel context of reconfigurable

networks.

There are two key objectives that oblivious reconfigurable net-

works must aim to optimize. First, since it is costly to overprovision

networks (especially for modern high-bandwidth links), datacenter

network operators aim for extremely high throughput, utilizing a

large constant factor of the available network capacity at all times

1339

https://orcid.org/0000-0002-6294-9604
https://orcid.org/0000-0003-2579-1147
https://orcid.org/0000-0003-2770-4799
https://orcid.org/0000-0002-6361-7687
https://orcid.org/0000-0002-8306-3407
https://orcid.org/0000-0001-6731-9938
https://doi.org/10.1145/3519935.3520020
https://doi.org/10.1145/3519935.3520020
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3519935.3520020&domain=pdf&date_stamp=2022-06-10

STOC ’22, June 20–24, 2022, Rome, Italy Daniel Amir, Tegan Wilson, Vishal Shrivastav, Hakim Weatherspoon, Robert Kleinberg, and Rachit Agarwal

if possible. At the same time, it is desirable to minimize latency, the

worst-case delay between when a packet arrives to the network

and when it reaches its destination. Thus, there is a vital need to

understand oblivious network designs for reconfigurable networks

that guarantee high throughput and low maximum latency.

The objectives of maximizing throughput and minimizing la-

tency in reconfigurable networks are in conflict: due to degree

constraints most nodes cannot be connected by a direct link at all

times, so one has to either use indirect paths, which comes at the

expense of throughput, or settle for higher latency while waiting

for reconfigurations to yield a more direct path. Since different

deployments (and applications) may necessitate different tradeoffs

between these two conflicting objectives, the main question that

our work investigates is the following:

For every throughput rate 𝑟 , what is the mini-
mum latency achievable by an oblivious reconfig-
urable network design that guarantees through-
put 𝑟?

We fully resolve this question to within a constant factor
1
for 𝑑-

regular reconfigurable networks, except when 𝑑 is very large —

bounded below by a constant power of 𝑁 (the number of nodes in

the network). That is, for every constant rate 𝑟 , we identify a lower

bound
1

𝑑
𝐿∗ (𝑟, 𝑁) such that any 𝑁 -node 𝑑-regular reconfigurable

network guaranteeing throughput 𝑟 must have maximum latency

bounded below by
1

𝑑
𝐿∗ (𝑟, 𝑁). Complementing this lower bound, we

design oblivious networking schemes that guarantee throughput 𝑟

and have maximum latency bounded by 𝑂 (1
𝑑
𝐿∗ (𝑟, 𝑁)), for every

constant 𝑟 ∈ (0, 1
2
], 𝑑 ∈ N, and infinitely many 𝑁 . (For 𝑟 > 1

2
+𝑜 (1),

we show in the full version of this paper [1] that it is impossible

for oblivious network designs to guarantee throughput 𝑟 .)

The shape of the optimal tradeoff curve between throughput and

latency is quite surprising. Figure 1 depicts the curve for 𝑁 = 10
9

and 𝑑 = 1; the 𝑥-axis measures the inverse throughput, 1/𝑟 , while
the 𝑦-axis (in log scale) measures maximum latency. The curve

is scallop-shaped, with particularly favorable tradeoffs occurring

when 1/𝑟 is an even integer. Between even-integer values of 1/𝑟 ,
the maximum latency improves slowly at first, then precipitously as

1/𝑟 approaches the next even integer. The proof of our main result

explains these key features of the tradeoff curve: its non-convexity,

the special role played by even integer values of 1/𝑟 , and the steep

but continuous improvement in 𝐿∗ (𝑟, 𝑁 , 𝑑) as 1/𝑟 approaches the
next even integer. In Section 1.2 below we sketch the intuitions that

account for these features. Before doing so, we pause to explain

more fully our model and notation.

1.1 Our Model and Results
Our model of oblivious reconfigurable networking is inspired by

the circuit-switched network designs popularized by works such

1
One could, of course, ask the transposed question: for every latency bound 𝐿, what is

the maximum guaranteed throughput rate achievable by an oblivious routing scheme
with maximum latency 𝐿? Our work also resolves this question, not only to within a

constant factor, but up to an additive error that tends to zero as 𝑁 → ∞. As noted

below in Section 1.2, optimizing throughput to within a factor of two, subject to a

latency bound, is much easier than optimizing latency to within a constant factor

subject to a throughput bound. The importance of the latter optimization problem,

i.e. our main question, is justified by the high cost of overprovisioning networks: due

to the cost of overprovisioning, datacenter network operators tend to be much less

tolerant of suboptimal throughput than of suboptimal latency.

Figure 1: A plot of the upper and lower bounds for the la-
tency of an ORN containing 10

9 nodes that can guarantee a
given throughput.

as [18, 19, 23]. These are networks composed of a fixed set of 𝑁

nodes, with a switching fabric that allows a time-varying pattern of

links providing connectivity between node pairs. A network design

in our model is specified by two ingredients: a connection schedule

and an oblivious routing scheme. The connection schedule desig-

nates which node pairs are connected in each timeslot. This can be

visualized in the form of a virtual topology: a layered directed graph

(with layers corresponding to timeslots) that encodes the paths that

network traffic can take over time. The oblivious routing scheme

designates, for each source-destination pair (𝑎, 𝑏) and timeslot 𝑡 , a

probability distribution over routing paths used to forward traffic

with destination 𝑏 that originates at 𝑎 in timeslot 𝑡 . A routing path

is specified by the sequence of edges in the virtual topology that

compose the path. We call the combination of a connection sched-

ule and an oblivious routing scheme an oblivious reconfigurable
network (ORN) design.

We evaluate ORN designs according to two quantities: maxi-

mum latency (𝐿) and guaranteed throughput (𝑟). Latency of a path

measures the difference between the timeslots when it starts and

ends, and an ORN design with maximum latency 𝐿 uses no rout-

ing paths of latency greater than 𝐿. The definition of guaranteed

throughput is more subtle. First, we model demand using a function

that specifies, for each source-destination pair and each timeslot,

the amount of flow with that source and destination originating

at that time. We say an ORN design guarantees throughput 𝑟 if the
routing scheme is guaranteed not to exceed the capacity of any link,

whenever the demand satisfies the property that the total amount

of demand originating at any source, or bound for any destination,

never exceeds 𝑟 at any timeslot. Our main result can now be stated

in the following form.

Theorem 1. Consider any constant 𝑟 ∈ (0, 1
2
] . Let (ℎ, 𝜀) to be the

unique solution in N × (0, 1] to the equation 1

2𝑟 = ℎ + 1 − 𝜀, and let
𝐿∗ (𝑟, 𝑁) be the function

𝐿∗ (𝑟, 𝑁) = ℎ

(
𝑁 1/(ℎ+1) + (𝜀𝑁)1/ℎ

)
.

1340

Optimal Oblivious Reconfigurable Networks STOC ’22, June 20–24, 2022, Rome, Italy

For every 𝑁 > 1 and every ORN design on 𝑁 nodes that guarantees
throughput 𝑟 , the maximum latency is at least Ω(𝐿∗ (𝑟, 𝑁)). Fur-
thermore for infinitely many 𝑁 there exists an ORN design on 𝑁

nodes that guarantees throughput 𝑟 and whose maximum latency is
𝑂 (𝐿∗ (𝑟, 𝑁)).

1.2 Techniques
To begin reasoning about the latency-throughput tradeoff in ORNs,

note that for any node in the virtual topology, the number of distinct

routing paths originating at that node whose latency is at most

𝐿 and which contain 𝑝 physical edges is

(𝐿
𝑝

)
. Hence, in order for

a node to be able to reach a majority of other nodes within 𝐿

timeslots using at mostℎ physical links, wemust have the inequality∑ℎ
𝑝=0

(𝐿
𝑝

)
≥ 𝑁 /2. A simple calculation verifies that this inequality

implies 𝐿 = Ω
(
ℎ𝑁 1/ℎ

)
. A routing scheme in which the routing

path between a random source and a random destination contains

ℎ physical links, on average, cannot guarantee throughput greater

than 1/ℎ. This suggests a latency-throughput relationship of the

form 𝐿 = Ω
(
1

𝑟 𝑁
𝑟
)
. This lower bound can be made rigorous with

a little bit of work, but it differs from the tight bound asserted in

Theorem 1 in two significant ways.

(1) Whereas
1

𝑟 𝑁
𝑟
is a smooth convex function of 𝑟 > 0, the func-

tion 𝐿∗ (𝑟, 𝑁) is non-smooth and non-convex; when plotted

as a function of 1/𝑟 it exhibits a scalloped shape with cusps

at even integer values of 1/𝑟 .
(2) The exponent of 𝑁 in the function 𝐿∗ (𝑟, 𝑁) is approximately

2𝑟 rather than 𝑟 . In other words, the naïve bound 𝐿 ≥ 1

𝑟 𝑁
𝑟

is tight up to a factor of 2 in terms of throughput, but off

by a factor of about 𝑁 𝑟
in terms of latency. (As remarked in

Footnote 1, sacrificing a factor of 2 in throughput is typically

regarded by network operators as much more costly than

sacrificing a constant factor in latency.)

The first of these differences is explained by a refinement of the

counting argument at the start of this section. In order to guarantee

throughput 𝑟 , the average number of physical hops on the routing

paths used (under any traffic demands with at most 𝑟 units of flow

based at any source or destination) must be at most 1/𝑟 . However,
the number of physical hops in any path must be an integer. Thus,

if 1/𝑟 is not an integer, at least a constant fraction of routing paths

must have ⌊1/𝑟⌋ physical hops or fewer. Subject to any upper bound
on latency, paths with a limited number of physical hops are much

less numerous than those with a larger number of physical hops,

so the requirement to use a large number of distinct paths with

⌊1/𝑟⌋ or fewer physical hops places a significantly stricter lower

bound on maximum latency, leading to the non-convex shape with

regularly spaced cusps depicted in Figure 1.

To give intuition for the factor-two difference in throughput

between the naïve lower bound and the true function 𝐿∗ (𝑟, 𝑁), it is
useful to recall Valiant load balancing (VLB), an ingredient in many

of the earliest and most practical oblivious routing schemes. VLB

constructs a random path from source 𝑠 to destination 𝑡 by choosing

a random intermediate node, 𝑟 , and concatenating minimum-cost

paths from 𝑠 to 𝑟 and from 𝑟 to 𝑡 . This inflates the number of physi-

cal hops used in routing paths by a factor of two, but is beneficial

because it prevents congestion under worst-case demands. The fact

that the exponent of 𝑁 in 𝐿∗ (𝑟, 𝑁) is approximately 2𝑟 rather than

𝑟 can be interpreted as confirming that the factor-two inflation due

to VLB is unavoidable, for oblivious routing schemes that guarantee

throughput 𝑟 . To prove this fact, we formulate optimal oblivious

routing for a given virtual topology as a linear program and inter-

pret the dual variables as endpoint-specific edge costs that can be

summed to ascribe a cost to every path connecting a given pair of

endpoints. We prove that, regardless of the virtual topology, one

can always design a carefully-constructed dual solution that penal-

izes paths containing a large number of physical hops, and doubly

penalizes physical hops that are too close to both endpoints. Paths

that avoid the double penalty must use twice as many physical

hops as minimum-cost paths, exactly as in VLB routing. The most

delicate part of the proof is the verification that the dual solution is

feasible, which requires carefully bounding the number of nodes

reachable from any source within a given cost budget.

To prove that the lower bound 𝐿∗ (𝑟, 𝑁) is tight, we need to

construct an ORN design that matches the bound up to a constant

factor. Our design is easiest to describe when 𝑟 = 1

2ℎ
and 𝑁 = 𝑛ℎ

for positive integer ℎ and prime number 𝑛. In that case, we use

a design that we call the Elementary Basis Scheme (EBS) which
identifies the set of 𝑁 nodes with elements of the group

2 (Z/(𝑛))ℎ .
Let e be the elementary basis consisting of the columns of the ℎ ×ℎ

identity matrix. EBS uses a connection schedule whose timeslots

cycle through the nonzero scalar multiples of elements of 𝑌 . In

a timeslot devoted to 𝑠 · e𝑖 , the network is configured to allow

each node 𝑥 to send to 𝑥 + 𝑠 · e𝑖 . Over the course of one complete

cycle, any two nodes can be connected by a “direct path” consisting

of ℎ physical hops (or fewer) that modify the coordinates of the

source node one by one until they match the coordinates of the

destination. The EBS routing scheme constructs a random path

connecting a given source and destination using VLB: it chooses a

random intermediate node and concatenates two “semi-paths”: the

direct paths from the source to the intermediate node and from the

intermediate node to the destination.

To generalize this design to all non-integer values of
1

2𝑟 , we need

to enhance EBS so that a constant fraction of semi-paths use ℎ

physical hops and a constant fraction use ℎ + 1 physical hops. This

necessitates a modified ORN design that we call the Vandermonde
Basis Scheme (VBS). Assume 𝑟 = ℎ + 1 − 𝜀 for ℎ ∈ N, 0 < 𝜀 < 1,

and that 𝑁 = 𝑛ℎ+1 for prime 𝑛, so that the nodes can be identified

with the vector space Fℎ+1𝑛 . Instead of one basis corresponding to

the identity matrix, we now use a sequence of distinct bases each

corresponding to a different Vandermonde matrix. In addition to the

single-basis semi-paths (which now constitute ℎ + 1 physical hops),

this enables the creation of “hop-efficient” semi-paths composed

of ℎ physical hops belonging to two or more of the Vandermonde

matrices in the sequence. Hop-efficient semi-paths have higher

latency than direct paths, but we opportunistically use only the ones

with lowest latency to connect a subset of terminal pairs, joining

the remaining pairs with direct semi-paths. A full routing path is

then defined to be the concatenation of two random semi-paths, as

before. Proving that the routing scheme guarantees throughput 𝑟

2
This should be thought of as the ℎ-dimensional vector space over Z/(𝑛) . While we

describe taking the elementary basis for simplicity here, the EBS scheme itself does not

require Z/(𝑛) to be a field, thus we use the word group here. This is further described

in Section 4.1.

1341

STOC ’22, June 20–24, 2022, Rome, Italy Daniel Amir, Tegan Wilson, Vishal Shrivastav, Hakim Weatherspoon, Robert Kleinberg, and Rachit Agarwal

boils down to quantifying, for each physical edge 𝑒 , the net effect of

shifting load from direct paths that use 𝑒 to hop-efficient paths that

avoid 𝑒 and vice-versa. The relevant sets of paths in this calculation

can be parameterized by unions of affine subspaces of Fℎ+1𝑛 , and

the use of Vandermonde matrices in the connection schedule gives

us control over the dimensions of intersections of these subspaces,

and thus over the size of their union.

1.3 Related work
Oblivious routing in general networks: Räcke’s seminal 2002

paper [21] proved the existence of polylog(𝑛)-competitive obliv-

ious routing schemes in general networks. Subsequent work im-

proved the competitive ratio [12] and devised polynomial-time

algorithms for computing an oblivious routing scheme that meets

this bound [3, 5, 12]. Räcke’s 2008 paper [22] yielded an 𝑂 (log𝑛)-
competitive oblivious routing scheme, computed by a fast, simple

algorithm based on multiplicative weights and FRT’s randomized

approximation of general metric spaces by tree metrics [7]. The

effectiveness of Räcke’s 2008 routing scheme for wide-area traffic

engineering in practice was demonstrated in [2, 16]. Additionally,

Gupta, Hajiaghayi, and Räcke [10] show a polylog(𝑛) competitive

ratio for routing schemes oblivious to both traffic and the cost

functions associated with each edge. While these works achieve

excellent congestion minimization over general networks, they do

not specifically consider throughput or latency, and do not attempt

to co-design the network with their routing scheme.

With respect to bounding the throughput of oblivious routing

schemes, Hajiaghayi, Kleinberg, Leighton, and Räcke [11] prove

a lower bound of Ω(log𝑛

log log𝑛
) on the competitive ratio in general

networks. However, their definition of throughput differs from

ours; they simply mean the combined flow rate delivered to all

sender-receiver pairs. With respect to latency, the competitive ratio

of average latency of oblivious routing over general networks is

analyzed by [13]. Their model of latency differs from ours; they

assign resistance values to each edge, and they only provide an

oblivious routing scheme achieving the 𝑂 (log(𝑁))-competitive

ratio when routing to a single target.

Valiant load balancing in hypercubes and other architec-
tures: Leslie Valiant introduced oblivious routing in [25]. The VLB

scheme for randomized routing in the hypercube was introduced,

and shown to be optimal, by Valiant and Brebner [25, 26]. While

these works evaluate latency under queueing, they do not evaluate

throughput. Additionally, they use a direct-connect torus topology.

Our work can be interpreted as proving that VLB is the optimal

oblivious routing scheme to use in conjunction with an optimally-

designed reconfigurable network topology, thus providing further

theoretical justification for the widespread usage of VLB in prac-

tice when oblivious routing is applied on handcrafted network

topologies.

Our first ORN design, EBS, for the casewhere𝑁 = 2
ℎ
, can be seen

as simulating VLB over a hypercube. In this case, the connection

schedule simulates an ℎ-dimensional hypercube by cycling through

ℎ different connection graphs, each with degree 1. While the la-

tency bound achieved by EBS in this case is O(𝑙𝑜𝑔(𝑁)), the same

bound found in [25], the differing contexts makes these bounds

incomparable. In particular, while Valiant considered queuing delay,

we consider latency intrinsic to the scheduled nature of ORNs.

A lower bound for deterministic oblivious routing in 𝑑-regular
networks with 𝑁 nodes was proven in [14]; the same paper shows

this bound is tight for hypercube networks, in which 𝑑 = log(𝑁).
Load-Balanced Switches: The load-balanced switch architec-

ture proposed by Chang [6] uses static schedules and sends traffic

obliviously via intermediate nodes. While there are significant sim-

ilarities between this architecture and ORNs, it differs in its use

of specialized intermediate nodes (rather than sending traffic via

multiple end-hosts), as well as its focus on monolithic switches.

Circuit-Switched Datacenter Network Architectures:
c-Through [27] and Traffic Matrix Scheduling [20], as well as

many other designs, propose a hybrid network in which a packet-

switched backbone exists alongside a circuit-switched fabric. How-

ever, with advances in circuit switches that have reduced reconfigu-

ration times to nanosecond-scale, it is worth reconsidering whether

a separate packet-switched backbone is truly necessary.

Oblivious Circuit-Switched Networks: Rotornet and Sirius

[4, 19] are two ORN concepts proposed for datacenter-wide net-

works that use optical circuit switches to build a reconfigurable

network fabric. Shoal [23] is a similar ORN concept that uses elec-

tric circuit switches in a disaggregated rack environment. Together,

these works demonstrate that the ORN paradigm is feasible in prac-

tice. These designs use similar schedules that prioritize achieving

high throughput at the expense of poor latency for large 𝑁 . Our

first ORN design, EBS, generalizes these existing designs to achieve

many potential tradeoffs, ranging from the existing tradeoff to that

achieved by an ORN version of hypercube routing.

Opera [18] evolves on the ORN concept by greatly lengthen-

ing each timeslot and creating an expander graph topology be-

tween nodes during each timeslot. Opera uses a non-oblivious rout-

ing scheme in which latency-sensitive traffic is sent via multiple

hops within a single expander graph topology, while throughput-

sensitive traffic is held until the schedule advances to a topology in

which it can be sent directly to the destination in one hop. This de-

sign makes strong assumptions about the workload, including that

bandwidth-sensitive traffic is near all-to-all, limiting its flexibility.

2 DEFINITIONS
This section presents definitions that formalize the notion of an

oblivious reconfigurable network (ORN).We assume a network of𝑁

nodes communicating in discrete, synchronous timeslots. The nodes

are joined by a communication medium that allows an arbitrary

pattern of unidirectional communication links to be established

in each timeslot, subject to a degree constraint that each node

participates as the sender in at most 𝑑 connections, and as the

receiver in at most 𝑑 connections. Throughout most of this paper

we specialize to the case𝑑 = 1; see Section 2.1 below for a discussion

of why the general case reduces to this special case.

In systems that instantiate reconfigurable networking, data is

encapsulated in fixed-size units called frames or packets. In this

work we instead treat data as a continuously-divisible commodity,

and we allow sending fractional quantities of flow along multiple

paths from the source to the destination. This abstraction is stan-

dard in theoretical works on oblivious routing, and can be justified

1342

Optimal Oblivious Reconfigurable Networks STOC ’22, June 20–24, 2022, Rome, Italy

Timeslot

0 1 2

N
o
d
e

A B C D

B C D A

C D A B

D A B C

A,0

B,0

C,0

D,0

A,1

B,1

C,1

D,1

A,2

B,2

C,2

D,2

A,3

B,3

C,3

D,3

Figure 2: A connection schedule among four nodes, as well
as part of its corresponding virtual topology. The full virtual
topology represents a countably infinite number of times-
lots.

by interpreting fractional flow as a probability distribution over

routing paths, with each frame being sent along one path sampled

at random from the distribution. Under this interpretation flow

values represent the expected number of frames traversing a link.

Definition 1. A connection schedule 𝝅 with size 𝑁 is a sequence

of permutations 𝜋 𝑗 for all 𝑗 ∈ Z, each mapping [𝑁] to [𝑁]. The
interpretation of the relation 𝜋𝑡 (𝑖) = 𝑗 is that node 𝑖 is allowed to

send one frame to node 𝑗 during timeslot 𝑡 .

For the rest of this paper we will focus on periodic connection
schedules, thosewith finite description size. These have some period

length 𝑇 such that 𝜋𝑡 (𝑖) = 𝜋𝑘 (𝑖) for all 𝑡 ≡ 𝑘 (mod 𝑇). See the full
paper [1] to see how our results extend to aperiodic schedules.

The virtual topology of the connection schedule 𝝅 is a directed

graph 𝐺𝝅 with vertex set [𝑁] × Z. The edge set of 𝐺𝝅 consists of

the union of 𝐸virt and 𝐸phys. 𝐸virt is the set of virtual edges, which
are of the form (𝑖, 𝑡) → (𝑖, 𝑡 + 1) and represent the frame waiting

at node 𝑖 during the timeslot 𝑡 . 𝐸
phys

is the set of physical edges,
which are of the form (𝑖, 𝑡) → (𝜋𝑡 (𝑖), 𝑡 + 1) and represent the frame

being transmitted from 𝑖 to 𝜋𝑡 (𝑖) at timeslot 𝑡 .

We interpret a path in𝐺𝝅 from (𝑎, 𝑡) to (𝑏, 𝑡 ′) as a potential way
to transmit a frame from node 𝑎 to node 𝑏, beginning at timeslot 𝑡

and ending at some timeslot 𝑡 ′. For a node 𝑎 ∈ [𝑁] let J𝑎K denote
the set {𝑎} × Z, consisting of all copies of 𝑎 in 𝐺𝝅 . Let P(𝑎, 𝑏, 𝑡)
denote the set of paths in 𝐺𝝅 from the vertex (𝑎, 𝑡) to J𝑏K. Finally,
let P =

⋃
𝑎,𝑏,𝑡 P(𝑎, 𝑏, 𝑡) denote the set of all paths in 𝐺𝝅 .

Definition 2. A flow is a function 𝑓 : P → [0,∞). For a given
flow 𝑓 , the amount of flow traversing an edge 𝑒 is defined as:

𝐹 (𝑓 , 𝑒) =
∑
𝑃 ∈P

𝑓 (𝑃) · 1𝑒∈𝑃

We say that 𝑓 is feasible if for every physical edge 𝑒 ∈ 𝐸
phys

,

𝐹 (𝑓 , 𝑒) ≤ 1.

Definition 3. The latency 𝐿(𝑃) of a path 𝑃 in 𝐺𝝅 is equal to the

number of edges it contains (both virtual and physical). Note that

traversing any edge in the virtual topology (either virtual or phys-

ical) is equivalent to advancing in time by the duration of one

timeslot, so the number of edges in a path is proportional to the

elapsed time. For a nonzero flow 𝑓 , the maximum latency is the

maximum over all paths in the flow

𝐿𝑚𝑎𝑥 (𝑓) = max

𝑃 ∈P
{𝐿(𝑃) : 𝑓 (𝑃) > 0}

Our definitions of latency and of the virtual topology 𝐺𝜋 incor-

porate the idealized assumption of zero propagation delay. In other

words, we assume that a frame sent in one timeslot is received by

the beginning of the following timeslot, and that the length of a path

in the virtual topology accurately reflects the time interval between

when the frame originates and when it reaches its destination.

Definition 4. An oblivious routing scheme 𝑅 is a function that

associates to every (𝑎, 𝑏, 𝑡) ∈ [𝑁] × [𝑁] × Z a flow 𝑅𝑎,𝑏,𝑡 such that:

(1) 𝑅𝑎,𝑏,𝑡 is supported on paths from (𝑎, 𝑡) to J𝑏K, meaning ∀𝑃 ∉

P(𝑎, 𝑏, 𝑡) 𝑅𝑎,𝑏,𝑡 (𝑃) = 0.

(2) 𝑅𝑎,𝑏,𝑡 routes one unit of flow, meaning

∑
𝑃 𝑅𝑎,𝑏,𝑡 (𝑃) = 1.

(3) 𝑅 has period𝑇 . In other words, 𝑅𝑎,𝑏,𝑡+𝑇 is equivalent to 𝑅𝑎,𝑏,𝑡
(except with all paths transposed by 𝑇 timeslots, as required

to satisfy point 1).

Definition 5. A demandmatrix is an𝑁×𝑁 matrixwhich associates

to each ordered pair (𝑎, 𝑏) an amount of flow to be sent from 𝑎 to 𝑏.

A demand function 𝐷 is a function that associates to every 𝑡 ∈ Z a
demand matrix 𝐷 (𝑡) representing the amount of flow 𝐷 (𝑡, 𝑎, 𝑏) to
originate between each source-destination pair (𝑎, 𝑏) at timeslot 𝑡 .

The throughput requested by demand function 𝐷 is the maximum,

over all 𝑡 , of the maximum row or column sum of 𝐷 (𝑡).

Definition 6. For a given oblivious routing scheme 𝑅 and demand

function 𝐷 , the induced flow 𝑓 (𝑅, 𝐷) is defined by:

𝑓 (𝑅, 𝐷) =
∑

(𝑎,𝑏,𝑡) ∈[𝑁]×[𝑁]×Z
𝐷 (𝑡, 𝑎, 𝑏)𝑅𝑎,𝑏,𝑡 .

Definition 7. An oblivious routing scheme is said to guarantee
throughput 𝑟 if the induced flow 𝑓 (𝑅, 𝐷) is feasible whenever the
demand function 𝐷 requests throughput at most 𝑟 .

Definition 7 can be interpreted as meaning that the network

is able to simulate a “big switch” with 𝑁 input and output ports

having line rate 𝑟 : as long as the amount of data originating at

any node 𝑎 or destined for any node 𝑏 does not exceed rate 𝑟 per

timeslot, the network is able to route all data to its destination

without violating capacity constraints.

In this work, we examine the tradeoffs between guaranteed

throughput and maximum latency. Specifically, among ORNs of

size 𝑁 that guarantee throughput 𝑟 , what is the lowest possible

maximum latency?

2.1 Allowing degree 𝑑 > 1 in a timeslot
Although our formalization of ORNs only describes networks in

which nodes have a degree of 1 in every timeslot, it can be general-

ized to networks that support a 𝑑-regular connectivity pattern in

each timeslot. When 𝑑 > 1, we interpret a demand matrix 𝐷 which

requests throughput 𝑟 as one in which the row and column sums

of 𝐷 are bounded above by 𝑑𝑟 .

The connectivity of𝑁 ×{𝑡, 𝑡+1} is𝑑-regular bipartite. By Kőnig’s
Theorem, this edge set can be decomposed into 𝑑 edge-disjoint

perfect matchings, which we use to “unroll” into 𝑑 consecutive

timeslots of a 1-regular ORN. Therefore, a 𝑑-regular ORN design

which guarantees throughput 𝑟 with maximum latency 𝐿 unrolls

into a 1-regular ORN design which guarantees throughput 𝑟 with

maximum latency 𝑑𝐿.

Under this framework, a lower bound 𝐿∗ (𝑟, 𝑁) for 1-regular
ORN designs trivially implies the lower bound

1

𝑑
𝐿∗ (𝑟, 𝑁) for 𝑑-

regular designs. However, an upper bound for 1-regular designs

1343

STOC ’22, June 20–24, 2022, Rome, Italy Daniel Amir, Tegan Wilson, Vishal Shrivastav, Hakim Weatherspoon, Robert Kleinberg, and Rachit Agarwal

does not necessarily imply a similar upper bound for 𝑑-regular

designs, because the routing scheme could route paths containing

two or more physical edges in timeslots belonging to the same

“unrolled” segment of the 1-regular virtual topology. This would

correspond to traversing two or more edges at once in the 𝑑-regular

topology. Our upper bound construction can be modified to avoid

this problem. Specifically, it can be modified to never allow flow to

be routed along two edges within any block of 𝑑 consecutive time

slots, provided 𝑑 ≤ 𝑁 1/(ℎ+1)
. This modification adds a factor of at

most 2 to the maximum latency. Then, by inverting the unrolling

process, we obtain a 𝑑-regular ORN design with maximum latency

𝐿 = 𝑂 (1
𝑑
𝐿∗ (𝑟, 𝑁)). This confirms that the tight bound on maximum

latency for 𝑑-regular ORN designs is Θ(1
𝑑
𝐿∗ (𝑟, 𝑁)) whenever 𝑑 ≤

𝑁 1/(ℎ+1)
and justifies our focus on the case 𝑑 = 1 throughout the

remainder this paper. These modifications are further described in

the full version of this paper [1].

3 LOWER BOUND
In this section we prove the lower-bound half of Theorem 1, which

says that when
1

2𝑟 = ℎ + 1 − 𝜀 with ℎ ∈ N and 0 < 𝜀 ≤ 1, any

𝑑-regular, 𝑁 -node ORN design that guarantees throughput 𝑟 must

have maximum latency Ω(ℎ
𝑑
[𝑁 1/(ℎ+1) + (𝜀𝑁)1/ℎ]). As noted in

Section 2.1, the general case of this lower bound reduces to the case

𝑑 = 1; we assume 𝑑 = 1 throughout the remainder of this section.

Because the full proof is somewhat long, we begin by sketching

some of the main ideas in the proof, beginning with a much simpler

argument leading to a lower bound of the form Ω(1𝑟 𝑁
𝑟) when

1/𝑟 is an integer. This simple lower bound applies not only to

oblivious routing schemes, but to any feasible flow 𝑓 that solves

the uniform multicommodity flow problem given by the demand

function 𝐷 (𝑡, 𝑎, 𝑏) = 𝑟
𝑁−1 for all 𝑡 ∈ [𝑇] and 𝑏 ≠ 𝑎. The lower

bound follows by combining a few key observations.

(1) Define the cost of a path to be the number of physical edges

it contains. Since every source sends out 𝑟 units of flow

at all times, the flow 𝑓 sends out 𝑟𝑁𝑇 units of flow per 𝑇 -

step period, in a network whose physical edges have only

𝑁𝑇 units of capacity per 𝑇 -step period. Consequently the

average cost of flow paths in 𝑓 must be at most
1

𝑟 .

(2) For any source node (𝑎, 𝑡) in the virtual topology, the number

of distinct destinations J𝑏K that can be reached via a path

with maximum latency 𝐿 and cost 𝑝 is bounded above by(𝐿
𝑝

)
.

(3) If 𝐿 ≤ 1

2𝑒𝑟 𝑁
𝑟
, we have

(𝐿
1/𝑟

)
≤ 𝑁 /4 and ∑

1/𝑟
𝑝=1

(𝐿
𝑝

)
≤ 𝑁 /2, so

the majority of source-destination pairs cannot be joined by

a path with latency 𝐿 and cost less than
1

𝑟 + 1. In fact, even if

we connect every source and destination with a minimum-

cost path (subject to latency bound 𝐿), one can show that

the average cost of paths will exceed
1

𝑟 .

(4) Since a feasible flow must have average path cost at most

1

𝑟 , we can conclude that a feasible flow does not exist when

𝐿 ≤ 1

2𝑒𝑟 𝑁
𝑟
.

When 1/𝑟 is an integer, this lower bound of 𝐿𝑚𝑎𝑥 ≥ 1

2𝑒𝑟 𝑁
𝑟

for feasible uniform multicommodity flows turns out to be tight

up to a constant factor. However for oblivious routing schemes,

Theorem 1 shows that maximum latency is bounded below by a

function in which the exponent of 𝑁 is roughly twice as large.

Stated differently, for a given maximum latency bound, the optimal

throughput guarantee for oblivious routing is only half as large as

the throughput of an optimal uniform multicommodity flow.

The factor-two difference in throughput between oblivious rout-

ing and optimal uniformly multicommodity flow solutions aligns

with the intuition that oblivious routing schemes must use indi-

rect paths (as in Valiant load balancing) if they are to guarantee

throughput 𝑟 , whereas uniform multicommodity flow solutions

(in a well-designed virtual topology) can afford to satisfy all de-

mands using shortest-path routing. The proof of the lower bound

for oblivious routing needs to substantiate this intuition.

To do so, we formulate oblivious routing as a linear program

and interpret the dual variables as specifying a more refined way to

measure the cost of paths. Rather than defining the cost of a path to

be its number of physical edges, the duality-based proof amounts to

an accounting system in which the cost of using an edge depends

on the endpoints of the path in which the edge is being used. For a

parameter 𝜃 which we will set to ℎ + 1 (unless 𝜀 is very small, in

which case we’ll set 𝜃 = ℎ + 2), the dual accounting system assesses

the cost of an edge to be 1 if its distance from the source is less than

𝜃 , plus 1 if its distance from the destination is less than 𝜃 . Thus,

the cost of an edge is doubled when it is close to both the source

and the destination. The doubling has the effect of equalizing the

costs of direct and indirect paths: when the distance between a

source and destination is at least 𝜃 , there is no difference in cost

between a shortest path and one that combines two semi-paths

each composed of 𝜃 physical edges.

Viewed in this way, it is intuitive that the proof manages to

show that VLB routing schemes, which construct routing paths by

concatenating random semi-paths with the appropriate number of

physical edges, correspond to optimal solutions of the oblivious

routing LP. The difficulty in the proof lies in showing that the con-

structed dual solution is feasible; for this, we make use of a version

of the same counting argument sketched above, that bounds the

number of distinct destinations reachable from a given source under

constraints on the maximum latency and the maximum number of

physical edges used.

3.1 Lower Bound Theorem Proof
Before presenting the proof of Theorem 2, we formalize the count-

ing argument we reasoned about in our proof sketch.

Lemma 1. (Counting Lemma) If in an ORN topology, some node 𝑎
can reach 𝑘 other nodes in at most 𝐿 timeslots using at most ℎ physical
hops per path for some integer ℎ, then 𝑘 ≤ 2

(𝐿
ℎ

)
, assuming ℎ ≤ 1

3
𝐿.

Proof. If node 𝑎 can reach 𝑘 other nodes in ≤ 𝐿 timeslots using

exactly ℎ physical hops per path, then 𝑘 ≤
(𝐿
ℎ

)
. Additionally, the

function

(𝐿
ℎ

)
grows at least exponentially in base 2 — that is,

(𝐿
ℎ

)
≥

2

(𝐿
ℎ−1

)
— up until ℎ = 1

3
𝐿. Therefore, the number of such 𝑘 is at

most

∑ℎ
𝑖=1

(𝐿
𝑖

)
≤ 2

(𝐿
ℎ

)
. □

Theorem 2. Given an ORN designR which guarantees throughput 𝑟 ,
the maximum latency suffered by any routing path 𝑃 with𝑅𝑎,𝑏,𝑡 (𝑃) >

1344

Optimal Oblivious Reconfigurable Networks STOC ’22, June 20–24, 2022, Rome, Italy

0 over all 𝑎, 𝑏, 𝑡 is bounded by the following equation

𝐿𝑚𝑎𝑥 ≥ Ω
(
ℎ

[
(𝜀𝑁)1/ℎ + 𝑁 1/(ℎ+1)

])
(1)

where ℎ =
⌊
1

2𝑟

⌋
and 𝜀 ∈ (0, 1] is set to equal ℎ+1− 1

2𝑟 . In other words,
(ℎ, 𝜀) is the unique solution inN× (0, 1] to the equation 1

2𝑟 = ℎ+1−𝜀.

Proof. Consider the linear program below which maximizes

throughput given a maximum latency constraint, 𝐿, where we let

P𝐿 (𝑎, 𝑏, 𝑡) be the set of paths from (𝑎, 𝑡) → J𝑏K with latency at

most 𝐿.

LP

maximize: 𝑟

subject to:

∑
𝑃 ∈P𝐿 (𝑎,𝑏,𝑡)

𝑅𝑎,𝑏,𝑡 (𝑃) = 𝑟

∀𝑎, 𝑏 ∈ [𝑁], 𝑡 ∈ [𝑇]∑
𝑎∈[𝑁]

𝑇−1∑
𝑡=0

∑
𝑃 ∈P𝐿 (𝑎,𝜎 (𝑎),𝑡) :𝑒∈𝑃

𝑅𝑎,𝜎 (𝑎),𝑡 (𝑃) ≤ 1

∀𝜎 ∈ 𝑆𝑁 , 𝑒 ∈ 𝐸
phys

𝑅𝑎,𝑏,𝑡 (𝑃) ≥ 0

∀𝑎, 𝑏 ∈ [𝑁], 𝑡 ∈ [𝑇], 𝑃 ∈ P𝐿 (𝑎, 𝑏, 𝑡)

The second set of constraints, in which the parameter 𝜎 ranges

over the set 𝑆𝑁 of all permutations of [𝑁], can be reformulated as

the following set of nonlinear constraints in which the maximum

is again taken over all permutations 𝜎 :

max

𝜎

𝑟
∑

𝑎∈[𝑁]

𝑇−1∑
𝑡=0

∑
𝑃 ∈P𝐿 (𝑎,𝜎 (𝑎),𝑡) :𝑒∈𝑃

𝑅𝑎,𝜎 (𝑎),𝑡 (𝑃)
 ≤ 1 ∀𝑒 ∈ 𝐸

phys

Note that given an edge 𝑒 , this maximization over permutations 𝜎

corresponds to maximizing over perfect bipartite matchings with

edge weights defined by𝑤𝑎,𝑏,𝑒 =
∑𝑇−1
𝑡=0

∑
𝑃 ∈P𝐿 (𝑎,𝑏,𝑡) :𝑒∈𝑃 𝑅𝑎,𝑏,𝑡 (𝑃).

This prompts the use of a maximum matching LP and its dual. We

substitute finding a feasible matching dual solution into the original

LP and take the dual again.

LP

maximize: 𝑟

subject to:

∑
𝑃 ∈P𝐿 (𝑎,𝑏,𝑡)

𝑅𝑎,𝑏,𝑡 (𝑃) = 𝑟

∀𝑎, 𝑏 ∈ [𝑁], 𝑡 ∈ [𝑇]

𝜉𝑎,𝑒 + 𝜂𝑏,𝑒 ≥
𝑇−1∑
𝑡=0

∑
𝑃 ∈P𝐿 (𝑎,𝑏,𝑡) :𝑒∈𝑃

𝑅𝑎,𝑏,𝑡 (𝑃)

∀𝑎, 𝑏 ∈ [𝑁], 𝑒 ∈ 𝐸
phys∑

𝑎∈[𝑁]
𝜉𝑎,𝑒 +

∑
𝑏∈[𝑁]

𝜂𝑏,𝑒 ≤ 1 ∀𝑒 ∈ 𝐸
phys

𝜉𝑎,𝑒 ≥ 0 ∀𝑎 ∈ [𝑁], 𝑒 ∈ 𝐸
phys

𝜂𝑏,𝑒 ≥ 0 ∀𝑏 ∈ [𝑁], 𝑒 ∈ 𝐸
phys

𝑅𝑎,𝑏,𝑡 (𝑃) ≥ 0

∀𝑎, 𝑏 ∈ [𝑁], 𝑡 ∈ [𝑇], 𝑃 ∈ P𝐿 (𝑎, 𝑏, 𝑡)

Dual

minimize:

∑
𝑒

𝑧𝑒

subject to:

∑
𝑎,𝑏,𝑡

𝑥𝑎,𝑏,𝑡 ≥ 1

𝑧𝑒 ≥
∑
𝑏

𝑦𝑎,𝑏,𝑒 ∀𝑎 ∈ [𝑁], 𝑒 ∈ 𝐸
phys

𝑧𝑒 ≥
∑
𝑎

𝑦𝑎,𝑏,𝑒 ∀𝑏 ∈ [𝑁], 𝑒 ∈ 𝐸
phys∑

𝑒∈𝑃
𝑦𝑎,𝑏,𝑒 ≥ 𝑥𝑎,𝑏,𝑡

∀𝑎, 𝑏 ∈ [𝑁], 𝑡 ∈ [𝑇], 𝑃 ∈ P𝐿 (𝑎, 𝑏, 𝑡)
𝑦𝑎,𝑏,𝑒 , 𝑧𝑒 ≥ 0 ∀𝑎, 𝑏 ∈ [𝑁], 𝑒 ∈ 𝐸

phys

The variables 𝑦𝑎,𝑏,𝑒 can be interpreted as either edge costs we

assign dependent on source-destination pairs (𝑎, 𝑏), or demand

functions designed to overload a particular edge 𝑒 . We will use

both interpretations, depending on if we are comparing 𝑦𝑎,𝑏,𝑒 vari-

ables to either 𝑥𝑎,𝑏,𝑡 or 𝑧𝑒 variables respectively. According to the

fourth dual constraint, the variables 𝑥𝑎,𝑏,𝑡 can be interpreted as

encoding the minimum cost of a path from (𝑎, 𝑡) to J𝑏K subject to la-
tency bound 𝐿. According to the second and third dual constraints,

the variables 𝑧𝑒 can be interpreted as bounding the throughput

requested by the demand function 𝐷 (𝑡, 𝑎, 𝑏) = 𝑦𝑎,𝑏,𝑒 . We will next

define the cost inflation scheme we use to set our dual variables.

Cost inflation scheme For a given node 𝑎 ∈ [𝑁] and cutoff

𝜃 ∈ Z>0, we will classify edges 𝑒 according to whether they are

reachable within 𝜃 physical hops of 𝑎, counting edge 𝑒 as one of

the hops. (In other words, one could start at node 𝑎 and cross edge

𝑒 using 𝜃 or fewer physical hops.) We define this value𝑚+
𝜃
(𝑒, 𝑎) as

follows.

𝑚+
𝜃
(𝑒, 𝑎) =

1 if 𝑒 can be reached from 𝑎 using at most 𝜃

physical hops (including 𝑒)

0 if otherwise

We define a similar value for edges which can reach node 𝑏.

𝑚−
𝜃
(𝑒, 𝑏) =

1 if 𝑏 can be reached from 𝑒 using at most 𝜃

physical hops (including 𝑒)

0 if otherwise

To understand how these values are set, consider some path 𝑃 from

(𝑎, 𝑡) → J𝑏K. If we consider the𝑚+
𝜃
,𝑚−

𝜃
weights on the edges of 𝑃 ,

then the first 𝜃 physical hop edges of 𝑃 have weight𝑚+
𝜃
(𝑒, 𝑎) = 1

and the last 𝜃 physical hop edges of 𝑃 have weight𝑚−
𝜃
(𝑒, 𝑏) = 1. It

may be the case that some edges have both𝑚+
𝜃
(𝑒, 𝑎) =𝑚−

𝜃
(𝑒, 𝑏) = 1,

if 𝑃 uses fewer than 2𝜃 physical hops. And if 𝑃 uses 𝜃 or fewer

physical hops, then every physical hop edge along 𝑃 has weight

𝑚+
𝜃
(𝑒, 𝑎) =𝑚−

𝜃
(𝑒, 𝑏) = 1. All other weights may be 0 or 1 depending

on whether those edges are otherwise reachable from 𝑎 or can

otherwise reach 𝑏.

We start by setting 𝑦𝑎,𝑏,𝑒 =𝑚+
𝜃
(𝑒, 𝑎) +𝑚−

𝜃
(𝑒, 𝑏). Also set 𝑥𝑎,𝑏,𝑡 =

min𝑃 ∈P𝐿 (𝑎,𝑏,𝑡) {
∑
𝑒∈𝑃 𝑦𝑎,𝑏,𝑒 }. Note that by definition, 𝑥 and 𝑦 vari-

ables satisfy the last dual constraint. We will next find a lower

1345

STOC ’22, June 20–24, 2022, Rome, Italy Daniel Amir, Tegan Wilson, Vishal Shrivastav, Hakim Weatherspoon, Robert Kleinberg, and Rachit Agarwal

bound𝑤 ≤ ∑
𝑎,𝑏,𝑡 𝑥𝑎,𝑏,𝑡 and use that to normalize the 𝑥,𝑦 variables

to satisfy the first dual constraint.

Note that

∑
𝑒∈𝑃 𝑦𝑎,𝑏,𝑒 ≥ min{2𝜃, 2|𝑃 ∩ 𝐸

phys
|}. Then we can

bound the sum of 𝑥 variables by∑
𝑎,𝑏,𝑡

𝑥𝑎,𝑏,𝑡 ≥
∑
𝑎,𝑡

∑
𝑏≠𝑎

min

𝑃 ∈P𝐿 (𝑎,𝑏,𝑡)
{2𝜃, 2|𝑃 ∩ 𝐸

phys
|}

Note that 𝑥𝑎,𝑏,𝑡 < 2𝜃 only when there exists some path from

(𝑎, 𝑡) to J𝑏K which uses less than 𝜃 physical edges. We can then use

the Counting Lemma to produce an upper bound on the number of

𝑏 ≠ 𝑎 which have such paths: this is at most 2

(𝐿
𝜃−1

)
.

So, assuming that 2

(𝐿
𝜃−1

)
≤ 𝑁 and that 𝜃 − 1 ≤ 𝐿/3, we have∑

𝑎,𝑡

∑
𝑏≠𝑎

𝑥𝑎,𝑏,𝑡 ≥ 𝑁𝑇

(
2𝜃

(
𝑁 − 2

(
𝐿

𝜃 − 1

))
+

(
𝐿

𝜃 − 1

))
Set

𝑤 = 𝑁𝑇

(
2𝜃

(
𝑁 − 2

(
𝐿

𝜃 − 1

))
+

(
𝐿

𝜃 − 1

))
,

and then set 𝑦𝑎,𝑏,𝑒 = 1

𝑤𝑦𝑎,𝑏,𝑒 and 𝑥𝑎,𝑏,𝑡 =
1

𝑤 𝑥𝑎,𝑏,𝑡 .

Next, we set 𝑧𝑒 = max𝑎,𝑏 {
∑
𝑎 𝑦𝑎,𝑏,𝑒 ,

∑
𝑏 𝑦𝑎,𝑏,𝑒 }. By construction,

the values of 𝑥𝑎,𝑏,𝑡 , 𝑦𝑎,𝑏,𝑒 , 𝑧𝑒 that we have defined satisfy the dual

constraints. Then to bound throughput from above, we upper bound

the sums

∑
𝑎 𝑦𝑎,𝑏,𝑒 and

∑
𝑏 𝑦𝑎,𝑏,𝑒 , thus upper bounding the sum of

𝑧𝑒 ’s.

∑
𝑎

𝑦𝑎,𝑏,𝑒 ≤ 1

𝑤

(∑
𝑎

𝑚+
𝜃
(𝑒, 𝑎) + 𝑁 − 1

)
≤ 1

𝑤

(
2

(
𝐿

𝜃 − 1

)
+ 𝑁 − 1

)
where the last step is an application of the Counting Lemma. Simi-

larly, ∑
𝑏

𝑦𝑎,𝑏,𝑒 ≤ 1

𝑤

(
𝑁 − 1 + 2

(
𝐿

𝜃 − 1

))
Recalling that 𝑧𝑒 = max𝑎,𝑏 {

∑
𝑎 𝑦𝑎,𝑏,𝑒 ,

∑
𝑏 𝑦𝑎,𝑏,𝑒 }, we deduce that

𝑧𝑒 ≤ 1

𝑤

(
𝑁 − 1 + 2

(
𝐿

𝜃 − 1

))
.

Using this upper bound on 𝑧𝑒 , we find that the optimal value of the

dual objective — hence also the optimal value of the primal, i.e. the

maximum throughput of oblivious routing schemes — is bounded

by

𝑟 ≤
∑
𝑒

𝑧𝑒 ≤ 𝑁𝑇

𝑤

(
𝑁 − 1 + 2

(
𝐿

𝜃 − 1

))
≤ 1

2𝜃
+ 4𝐿𝜃−1

2𝜃 (𝑁 (𝜃 − 1)! − 2𝐿𝜃−1)

using the fact that
𝑎!

(𝑎−𝑏)! ≤ 𝑎𝑏 . At this point, we can rearrange the

inequality to isolate 𝐿.

𝑟 − 1

2𝜃
≤ 4𝐿𝜃−1

2𝜃 (𝑁 (𝜃 − 1)! − 2𝐿𝜃−1)(
(𝑟 − 1

2𝜃
)2𝜃𝑁 (𝜃 − 1)!

4 + (𝑟 − 1

2𝜃
)4𝜃

) 1

𝜃−1

≤ 𝐿

Now that we have a closed form, we simplify. We use Stirling’s

approximation, in the form (𝑘!)
1

𝑘 ≥ 𝑘
𝑒

√
2𝜋𝑘

1

𝑘
.

𝐿 ≥ 𝑁
1

𝜃−1 (𝜃 − 1)!
1

𝜃−1

(
(𝑟 − 1

2𝜃
)2𝜃

4 + (𝑟 − 1

2𝜃
)4𝜃

) 1

𝜃−1

≥ 𝜃 − 1

𝑒
𝑁

1

𝜃−1
©«
(𝑟 − 1

2𝜃
)𝜃

√
𝜋 (𝜃−1)

2

𝜃𝑟 + 1

2

ª®®¬
1

𝜃−1

To set the parameter 𝜃 , first note that the above bound is positive

when 𝑟 > 1

2𝜃
. Additionally, we would like to set 𝜃 as large as

possible, and 𝜃 must be an integer value (otherwise the Counting

Lemma doesn’t make sense). Taking this into account, we set 𝜃 =⌊
1

2𝑟

⌋
+ 1, the nearest integer for which (𝑟 − 1

2𝜃
) produces a positive

value.

To simplify our lower bound further, let ℎ =
⌊
1

2𝑟

⌋
and 𝜀 = ℎ + 1−

1

2𝑟 . These can be interpreted in the following way: ℎ represents the

largest number of physical hops we take per path (approximately),

and 𝜀 is directly related to how many pairs take paths using ℎ

physical hops instead of paths using fewer than ℎ physical hops.

Note that 𝜀 ∈ (0, 1]. This gives the restated bound below.

𝐿 ≥ ℎ

𝑒
𝑁 1/ℎ ©«

(𝑟 − 1

2(ℎ+1)) (ℎ + 1)
√
𝜋ℎ/2

(ℎ + 1)𝑟 + 1

2

ª®¬
1/ℎ

≥ ℎ

𝑒
(𝜀𝑁)1/ℎ

(√
𝜋ℎ/2
4ℎ

)
1/ℎ

(2)

= Ω
(
ℎ(𝜀𝑁)1/ℎ

)
As 𝜀 → 0, this bound goes toward 0, making it meaningless

for extremely small values of 𝜀. However, for such values of 𝜀, we

simply set 𝜃 = ℎ + 2 instead, which gives the following

𝐿𝑚𝑎𝑥 ≥ Ω
(
(ℎ + 1)𝑁 1/(ℎ+1)

)
To combine the two ways in which we set 𝜃 , we take the average of

the two bounds. This gives the bound from our theorem statement,

𝐿𝑚𝑎𝑥 ≥ Ω
(
ℎ

[
(𝜀𝑁)1/ℎ + 𝑁 1/(ℎ+1)

])
= Ω

(
𝐿∗ (𝑟, 𝑁)

)
.

□

4 UPPER BOUND
To prove an upper bound on the latency achievable while guarantee-

ing a given throughput, we define an infinite family of ORN designs

which we refer to as the Elementary Basis Scheme (EBS). The upper

bound given by EBS is within a constant factor of 𝐿∗ (𝑟, 𝑁) for most

values of 𝑟 . To tightly bound the remaining values of 𝑟 , we describe

a second infinite family of ORN designs which we refer to as the

Vandermonde Bases Scheme (VBS). Combined, EBS and VBS give a

tight upper bound on maximum latency for all constant 𝑟 . In the full

version of this paper [1], we address the upper bound for 𝑑-regular

networks with 𝑑 > 1 by modifying EBS and VBS.

1346

Optimal Oblivious Reconfigurable Networks STOC ’22, June 20–24, 2022, Rome, Italy

0 1 2 3

AA BA CA AB AC

BA CA AA BB BC

CA AA BA CB CC

· · · · ·
· · · · ·

BC CC AC BA BB

CC AC BC CA CB

Figure 3: Connection schedule for 9 nodes in ℎ = 2 EBS, as
well as part of the corresponding virtual topology. Physical
edges used on semi-paths from ((AA),0) to other nodes are
highlighted in green. This schedule can be seen as a gener-
alization of the one presented in Figure 2.

4.1 Elementary Basis Scheme
Connection Schedule: Each node will participate in a series of sub-

schedules called round robins. Consider the cyclic group𝐻 = Z/(𝑛)
acting freely on a set 𝑆 of 𝑛 nodes, where we denote the action of

𝑡 ∈ 𝐻 on 𝑖 ∈ 𝑆 by 𝑖 + 𝑡 . A round robin for 𝑆 is a schedule of 𝑛 − 1

timeslots in which each element of 𝑆 has a chance to send directly

to each other element exactly once; during timeslot 𝑡 ∈ [𝑛 − 1],
node 𝑖 may send to 𝑖 + 𝑡 . The number of round-robins in which each

EBS node participates is controlled by a tuning parameter ℎ which

we refer to as the order. Similar to in Section 3, ℎ will be half of the

the maximum number of physical hops in an EBS path.

Let 𝑛 = 𝑁 1/ℎ
, so that the node set [𝑁] is in one-to-one corre-

spondence with the elements of the group 𝐻ℎ
. Each node 𝑎 ∈ [𝑁]

is assigned a unique set of ℎ coordinates (𝑎0, 𝑎1, ..., 𝑎ℎ−1) ∈ 𝐻ℎ
and

participates in ℎ round robins, each containing the 𝑛 nodes that

match in all but one of the ℎ coordinates. We refer to these round

robins as phases of the EBS schedule. One full iteration of the EBS

schedule, or an epoch, contains ℎ phases. Because each phase is

a round robin among 𝑛 nodes, each phase takes 𝑛 − 1 timeslots,

resulting in an overall epoch length of 𝑇 = ℎ(𝑛 − 1) = ℎ(𝑁 1/ℎ − 1).
We now describe the EBS schedule formally. We express each

node 𝒊 as the ℎ-tuple (𝑖0, 𝑖1, . . . , 𝑖ℎ−1) ∈ (Z/𝑛)ℎ . Similarly, we iden-

tify each permutation 𝜋𝑘 of the connection schedule using a scale

factor 𝑠 , 1 ≤ 𝑠 < 𝑛, and a phase number 𝑝 , 0 ≤ 𝑝 < ℎ, such that

𝑘 = (𝑛 − 1)𝑝 + 𝑠 − 1. Let e𝑝 denote the standard basis vector whose

𝑝th coordinate is 1 and all other coordinates are 0. The connection

schedule is then 𝜋 (𝑛−1)𝑝+𝑠−1 (𝒊) = 𝒊+𝑠e𝑝 = 𝒋. Since e is the standard
basis, 𝑗𝑥 = 𝑖𝑥 for 𝑥 ≠ 𝑝 , and 𝑗𝑝 = 𝑖𝑝 + 𝑠 (mod 𝑛).

The EBS schedule can be seen as simulating a flattened butterfly

graph between nodes [15]. This schedule generalizes existing ORN

designs which have thus far all been based on the same schedule: a

single round robin among all nodes, simulating an all-to-all graph.

When ℎ = 1, the EBS schedule reduces to this existing schedule.

On the other hand, when ℎ = log
2
(𝑁), the EBS schedule simulates

a direct-connect hypercube topology. By varying ℎ, in addition to

achieving these two known points, the EBS family includes sched-

ules which achieve intermediate throughput and latency tradeoff

points.

4.1.1 Oblivious Routing Scheme. The EBS oblivious routing scheme

is based around Valiant load balancing (VLB) [26]. VLB operates

in two stages: first, traffic is routed from the source to a random

intermediate node in the network. Then, traffic is routed from the

intermediate node to its final destination. This two-stage design

ensures that traffic is uniformly distributed throughout the network

regardless of demand. We refer to the path taken during an individ-

ual stage as a semi-path, and we use the same algorithm to generate

semi-paths in either stage.

To create a semi-path between a node (𝑎, 𝑡) and J𝑏K, the following
greedy algorithm is used starting at (𝑎, 𝑡): for the current node in the
virtual topology, if the outgoing physical edge leads to a node with a

decreased Hamming distance to 𝑏 (i.e. it matches 𝑏 in the modified

coordinate), traverse the physical edge. Otherwise, traverse the

virtual edge. This algorithm terminates when it reaches a node in

J𝑏K. Note that because there areℎ coordinates, the largest Hamming

distance possible is ℎ, and the longest semi-paths use ℎ physical

links.

In order to construct a full path from (𝑎, 𝑡) to J𝑏K, first select
an intermediate node 𝑐 in the system uniformly at random. Then,

traverse the semi-path from (𝑎, 𝑡) to J𝑐K. Let 𝑡 ′ be the timeslot at

which we reach J𝑐K. If 𝑡 ′ < 𝑡 +𝑇 , traverse virtual edges until node
(𝑐, 𝑡 +𝑇) is reached. Finally, traverse the semi-path from (𝑐, 𝑡 +𝑇)
to J𝑏K.

The EBS oblivious routing scheme is formed as follows: for 𝑅𝑎,𝑏,𝑡 ,

for all intermediate nodes 𝑐 , construct the path from (𝑎, 𝑡) to J𝑏K
via 𝑐 as described above, and assign it the value

1

𝑁
. Assign all other

paths the value 0. Because there are 𝑁 possible intermediate nodes,

each of which is used to define one path from (𝑎, 𝑡) to J𝑏K, this
routing scheme defines one unit of flow.

4.2 Latency-Throughput Tradeoff of EBS
Proposition 1. For each 𝑟 ≤ 1

2
such that ℎ = 1

2𝑟 is an integer, and
each 𝑁 > 1 such that 𝑁 1/ℎ is an integer, the EBS design of order
ℎ on 𝑁 nodes guarantees throughput 𝑟 and has maximum latency
1

𝑟

(
𝑁 2𝑟 − 1

)
.

The proof of Proposition 1 is contained in the following two

subsections, which address the latency and throughput guarantees

respectively.

4.2.1 Latency. Recall that ℎ = 1

2𝑟 and that 𝑛 = 𝑁 1/ℎ = 𝑁 2𝑟
, so the

latency bound in Proposition 1 can be written as 2ℎ(𝑛 − 1). Since
the epoch length is 𝑇 = ℎ(𝑛 − 1), the latency bound asserts that

every EBS routing path completes within a time interval no greater

than the length of two epochs. An EBS path is composed of two

semi-paths, so we only need to show that each semi-path completes

within the length of a single epoch.

Let (𝑎, 𝑡) denote the first node of the semi-path. If 𝑡 occurs at the

start of a phase, then after 𝑝 phases have completed the Hamming

distance to the semi-path’s destination address must be less than or

equal to 𝑡 − 𝑝 ; consequently the semi-path completes after at most

ℎ phases, as claimed. If 𝑡 occurs in the middle of a phase using basis

vector e𝑝 , let 𝑠 denote the number of timeslots that have already

elapsed in that phase. Either the semi-path is able to match the 𝑝th

destination coordinate before the phase ends, or the coordinate can

be matched during the first 𝑠 timeslots of the next phase that uses

basis vector e𝑝 . In either case, the 𝑝th destination coordinate will

be matched no later than timeslot 𝑡 +𝑇 , and all other destination

coordinates will be matched during the intervening phases.

1347

STOC ’22, June 20–24, 2022, Rome, Italy Daniel Amir, Tegan Wilson, Vishal Shrivastav, Hakim Weatherspoon, Robert Kleinberg, and Rachit Agarwal

4.2.2 Throughput.

Lemma 2. Let 𝑅 be the EBS routing scheme for a given 𝑁 and ℎ. For
all demand functions 𝐷 requesting throughput at most 1

2ℎ
, the flow

𝑓 (𝑅, 𝐷) is feasible.

Proof. Consider an arbitrary demand function 𝐷 requesting

throughput 𝑟 = 1

2ℎ
, and consider an arbitrary physical edge 𝑒 ∈

𝐸
phys

from (𝑖, 𝑡𝑒) to (𝑗, 𝑡𝑒 +1), where 𝑡𝑒 is the timeslot during which

the edge begins. Let 𝑡𝑒 ≡ (𝑝𝑒 , 𝑠𝑒) such that 𝑝𝑒 is the phase in the

schedule corresponding to 𝑡𝑒 , and 𝑠𝑒 is the scale factor used during

𝑡𝑒 . We wish to show that 𝐹 (𝑓 (𝑅, 𝐷), 𝑒) ≤ 1.

We first use a greedy algorithm (described in the full version

of this paper [1]) to generate 𝐷 ′
, a demand function such that

for all 𝑡 , 𝐷 ′(𝑡) has row and column sums exactly equal to 𝑟 , and

𝐷 ′(𝑡) bounds𝐷 (𝑡) above. Due to the latter condition, it follows that
𝑓 (𝑅, 𝐷 ′) bounds 𝑓 (𝑅, 𝐷) above; thus 𝐹 (𝑓 (𝑅, 𝐷 ′), 𝑒) ≥ 𝐹 (𝑓 (𝑅, 𝐷), 𝑒).
Henceforward, we focus on proving 𝐹 (𝑓 (𝑅, 𝐷 ′), 𝑒) ≤ 1.

Valid paths in EBS include two components: the semi-path from

the source node to an intermediate node, and the semi-path from

the intermediate node to the destination node. We can therefore

decompose the paths in 𝐹 (𝑓 (𝑅, 𝐷 ′), 𝑒) into two components as

follows: first, we define 𝑅′
, a routing protocol defined such that

𝑅′
𝑎,𝑏,𝑡

(𝑃) equals 1 if 𝑃 is the semi-path from (𝑎, 𝑡) to J𝑏K, and 0

otherwise. Because EBS uses the same routing strategy for both

source-intermediate semi-paths and intermediate-destination semi-

paths, 𝑅′
is used for both components. Then, we introduce two

demand functions: 𝐷 ′
𝑎→𝑏

represents demand on semi-paths from

origin nodes to intermediate nodes, while𝐷 ′
𝑏→𝑐

represents demand

on semi-paths from intermediate nodes to destination nodes. Note

that for all physical edges 𝑒 ,

𝐹 (𝑓 (𝑅, 𝐷 ′), 𝑒) = 𝐹 (𝑓 (𝑅′, 𝐷 ′
𝑎→𝑏

), 𝑒) + 𝐹 (𝑓 (𝑅′, 𝐷 ′
𝑏→𝑐

), 𝑒).
To characterize 𝐷 ′

𝑎→𝑏
, note that regardless of source and destina-

tion, 𝑅 samples intermediate nodes uniformly. Therefore, for all

(𝑡, 𝑎, 𝑏) ∈ Z × [𝑁] × [𝑁],

𝐷 ′
𝑎→𝑏

(𝑡, 𝑎, 𝑏) = 1

𝑁

∑
𝑐∈[𝑁]

𝐷 ′(𝑡, 𝑎, 𝑐) = 𝑟

𝑁

Similarly, because semi-paths from an intermediate node to the

destination always commence exactly 𝑇 timeslots after the starting

vertex, we can characterize 𝐷 ′
𝑏→𝑐

(𝑡, 𝑏, 𝑐) as follows:

𝐷 ′
𝑏→𝑐

(𝑡, 𝑏, 𝑐) = 1

𝑁

∑
𝑎∈[𝑁]

𝐷 ′(𝑡 −𝑇, 𝑎, 𝑐) = 𝑟

𝑁

Note that 𝐷 ′
𝑎→𝑏

= 𝐷 ′
𝑏→𝑐

= 𝐷𝐴𝐿𝐿
, where 𝐷𝐴𝐿𝐿

is the uniform

all-to-all demand function 𝐷𝐴𝐿𝐿 (𝑡, 𝑎, 𝑏) = 𝑟
𝑁

for all (𝑡, 𝑎, 𝑏) ∈ Z ×
[𝑁] × [𝑁]. Therefore, 𝐹 (𝑓 (𝑅, 𝐷), 𝑒) ≤ 2𝐹 (𝑓 (𝑅′, 𝐷𝐴𝐿𝐿), 𝑒).

Claim 1. For all 𝑒 ∈ 𝐸phys, there are exactly 𝑇𝑛ℎ−1 triples (𝑡, 𝑎, 𝑏)
such that the semi-path from (𝑎, 𝑡) to J𝑏K traverses 𝑒 .

Proof of claim. Denote the endpoints of edge 𝑒 by (𝑖, 𝑡𝑒) and
(𝑖 + 𝑠 · e𝑝 , 𝑡𝑒 + 1). The semi-path of a triple (𝑡, 𝑎, 𝑏) traverses 𝑒
if and only if the semi-path first routes from (𝑎, 𝑡) to (𝑖, 𝑡𝑒), and
(𝑏 − 𝑎)𝑝 = 𝑠 .

Because semi-paths complete in 𝑇 timeslots, only semi-paths

beginning in timeslots in the range [𝑡𝑒 −𝑇 + 1 . . . 𝑡𝑒] could possibly

reach node (𝑖, 𝑡𝑒) and traverse 𝑒 . For every 𝑡 ∈ [𝑡𝑒 −𝑇 +1..𝑡𝑒], where
𝑡 ≡ (𝑝𝑡 , 𝑠𝑡), we can construct 𝑛ℎ−1 such triples as follows: First,

we select 𝒅, a vector representing the difference between 𝑎 and 𝑏

in the triple we will construct. To satisfy the second condition on

(𝑡, 𝑎, 𝑏), we must set 𝒅𝑝 = 𝑠 . However, the remaining ℎ − 1 indices

of 𝒅 can take on any of the 𝑛 possible values. Thus, there are 𝑛ℎ−1

possibilities for 𝒅.
For any semi-path (𝑡, 𝑎, 𝑏) such that 𝑏 − 𝑎 = 𝒅, the timeslots in

which a physical edge is traversed can be determined from 𝒅. For
any given timeslot 𝑡 ′ ≡ (𝑝 ′, 𝑠 ′) such that 𝑡 ≤ 𝑡 ′ < 𝑡 +𝑇 , a physical
edge is traversed if and only if 𝒅𝑝′ = 𝑠 ′. These are the edges that
decrease the Hamming distance to 𝑏 by correctly setting coordinate

𝑝 . We thus construct 𝑎 as follows: For every index 𝑝 , if (𝒅𝑝 , 𝑝) is
between 𝑘𝑡 and 𝑘𝑒 − 1 inclusive, we set 𝑎𝑝 = 𝒊𝑝 − 𝒅𝑝 . Otherwise,
we set 𝑎𝑝 = 𝒊𝑝 . Once we have constructed 𝑎, 𝑏 is simply 𝑎 + 𝒅. This
choice of 𝑎 and 𝑏 ensures that by timeslot 𝑡𝑒 , the semi-path from

(𝑎, 𝑡) to J𝑏K reaches J𝑖K.
For each of the 𝑇 timeslots for which semi-paths originating

in the given timeslot may traverse 𝑒 , there are 𝑛ℎ−1 such semi-

paths. This gives a total of 𝑇𝑛ℎ−1 semi-paths that traverse 𝑒 over

all timeslots. Note that because each such semi-path has a unique

(𝑡, 𝒅), none of the constructed semi-paths are double counted. In

addition, because the (𝑡, 𝒅) pair determines the timeslots in which

physical links are followed, and because there is only one physical

link entering and leaving each node during each timeslot, there

cannot be more than one choice of 𝑎 for a given (𝑡, 𝒅) pair such that

the semi-path includes (𝑖, 𝑡𝑒). Because the 𝑇𝑛ℎ−1 count includes all
possible choices of 𝒅 for every timeslot, all semi-paths that traverse

𝑒 are accounted for. □

Nowwe continuewith the proof of Lemma 2. Since exactly𝑇𝑛ℎ−1

triples (𝑡, 𝑎, 𝑏) correspond to semi-paths that traverse 𝑒 , and 𝐷𝐴𝐿𝐿

assigns
𝑟
𝑁

flow to each semi-path, 𝐹 (𝑓 (𝑅′, 𝐷𝐴𝐿𝐿), 𝑒) = 𝑟
𝑁
𝑇𝑛ℎ−1 =

𝑟
𝑁
ℎ(𝑛 − 1)𝑛ℎ−1. Thus:

𝐹 (𝑓 (𝑅, 𝐷), 𝑒) ≤ 2𝐹 (𝑓 (𝑅′, 𝐷𝐴𝐿𝐿), 𝑒) = 2

𝑟

𝑁
ℎ(𝑛 − 1)𝑛ℎ−1 < 2𝑟ℎ

When 𝑟 ≤ 1

2ℎ
, for all physical edges 𝑒 , 𝐹 (𝑓 (𝑅, 𝐷, 𝑒)) ≤ 1. Thus,

𝑓 (𝑅, 𝐷) is feasible. □

4.2.3 Tightness of EBS Upper Bound.

Lemma 3. For 0 < 𝑟 ≤ 1

2
let ℎ =

⌊
1

2𝑟

⌋
and 𝜀 = ℎ + 1 − 1

2𝑟 . The EBS
design of order ℎ attains maximum latency at most𝐶𝐿∗ (𝑟, 𝑁), except
when

𝜀 ≥ 2

√
2ℎ

𝜋

(
2𝑒

𝐶

)ℎ
.

Proof. Theorem 2 and Proposition 1 together show the follow-

ing about the maximum latency of EBS compared to the maximum

latency lower bound:

𝐿𝐸𝐵𝑆 ≤ 2ℎ𝑁 1/ℎ

𝐿∗ (𝑟, 𝑁) ≥ ℎ

𝑒
(𝜀𝑁)1/ℎ

(√
𝜋ℎ/2
4ℎ

)
1/ℎ

Note that this interpretation of the maximum latency lower bound

is taken from equation (2) in the proof of Theorem 2.

1348

Optimal Oblivious Reconfigurable Networks STOC ’22, June 20–24, 2022, Rome, Italy

Suppose we wish to assert 𝐿𝐸𝐵𝑆/𝐿∗ (𝑟, 𝑁) ≤ 𝐶 . Given 𝐶 and ℎ,

we will derive the possible values of 𝜀 for which this assertion holds.

𝐶 ≥ 2ℎ𝑁 1/ℎ

ℎ
𝑒 (𝜀𝑁)1/ℎ

(√
𝜋ℎ/2
4ℎ

)
1/ℎ =

2𝑒(
𝜀
√
𝜋ℎ/2
4ℎ

)
1/ℎ

⇐⇒ 𝜀 ≥ 2

√
2ℎ

𝜋

(
2𝑒

𝐶

)ℎ
□

When 𝜀 falls outside this range, the maximum latency of the EBS

design is far from optimal. In the following sections we present and

analyze an ORN design which gives a tighter upper bound when 𝜀

falls outside this range, in other words when 𝜀 < 2

√
2ℎ
𝜋

(
2𝑒
𝐶

)ℎ
.

4.3 Vandermonde Bases Scheme
In order to provide a tight bound when 𝜀 is very small, we define a

new family of ORN designs which we term the Vandermonde Bases

Scheme (VBS). VBS is defined for values of 𝑁 which are perfect

powers of prime numbers. We begin by providing some intuition

behind the design of VBS.

For ℎ =
⌊
1

2𝑟

⌋
and 𝜀 = ℎ + 1 − 1

2𝑟 , a small value of 𝜀 indicates that

𝑟 is slightly above
1

2(ℎ+1) . This indicates that the average number

of physical hops in a path can be at most slightly below the even

integer 2(ℎ + 1). EBS is only able to achieve an average number of

physical hops equal to an even integer as 𝑁 becomes sufficiently

large. In small 𝜀 regions, the difference between the highest average

number of physical hops theoretically capable of guaranteeing 𝑟

throughput and the average number of physical hops used by EBS

approaches 2. This suggests that EBS achieves a throughput-latency

tradeoff that favors throughput more than is necessary in these

regions, penalizing latency too much to form a tight bound. A more

effective ORN design for these regions would usually use paths

with 2(ℎ + 1) physical hops, and mix in sufficiently many paths

with fewer physical hops to ensure that the average number of

physical hops per path is at most 2(ℎ + 1 − 𝜀).
VBS achieves this by employing two routing strategies for semi-

paths alongside each other. The first strategy, single-basis (SB)

paths, resembles the semi-path routing used by EBS for ℎ′ = ℎ + 1.

The second strategy, hop-efficient (HE) paths, will rely on the fact

that VBS’s schedule regularly modifies the basis used to determine

which nodes are connected to one another. HE paths will consider

edges beyond the current basis, enabling them to form semi-paths

between nodes using only ℎ hops, even when this is not possible

within a single basis. The more future phases are considered, the

more nodes can be connected by HE paths. This tuning provides a

high granularity in the achieved tradeoff between throughput and

latency, and enables a tight bound in regions where 𝜀 is small. It is

interesting that the quantitative reasoning underlying this scheme

is reminiscent of the proof of the Counting Lemma (Lemma 1),

which similarly classifies paths into short paths and long paths and

counts the number of destinations reachable by short paths.

We define VBS for 𝑁 = 𝑛ℎ+1 such that 𝑛 is a prime number. The

connection schedule and routing algorithm of VBS depend on a

parameter 𝛿 , which represents a target for the fraction of semi-paths

that traverse HE paths. We later describe how to set 𝑄 , the number

of future phases considered for HE paths, such that the number of

destinations reachable by HE paths is approximately 𝛿𝑁 .

4.3.1 Connection Schedule. We assume the total number of nodes

in the system is𝑁 = 𝑛ℎ+1 for some prime number𝑛. As in EBS, each

node 𝑎 is assigned a unique set of ℎ + 1 coordinates (𝑎0, 𝑎1, ..., 𝑎ℎ),
each ranging from 0 to 𝑛 − 1. This maps each node to a unique

element of Fℎ+1𝑛 . We identify each permutation 𝜋𝑘 of the connection

schedule using a scale factor 𝑠 , 1 ≤ 𝑠 < 𝑛 and a phase number
3

𝑝 , 0 ≤ 𝑝 < 𝑛, such that 𝑘 = (𝑛 − 1)𝑝 + 𝑠 − 1. Each phase 𝑝 is

formed using the Vandermonde vector 𝒗 (𝑝) = (1, 𝑝, 𝑝2, ..., 𝑝ℎ). This
produces the connection schedule 𝜋 (𝑛−1)𝑝+𝑠−1 (𝒊) = 𝒊 + 𝑠𝒗 (𝑝).

4.3.2 Routing Algorithm. As with EBS, VBS’s oblivious routing

scheme is based around VLB. First, traffic is routed along a semi-

path from the source to a random intermediate node in the network,

and then traffic is routed along a second semi-path from the interme-

diate node to its final destination. As in EBS, the same algorithm is

used to generate semi-paths in both stages of VLB. However, unlike

in EBS, semi-paths are only defined starting at phase boundaries.

Thus, the first step of a VBS path is to traverse up to 𝑛 − 2 virtual

edges until a phase boundary is reached. Paths are then defined for

a given (𝑞, 𝑎, 𝑏) triple, where 𝑞 = 𝑡/(𝑛 − 1) for some timeslot 𝑡 at

the beginning of a phase (hence 𝑡 is divisible by 𝑛 − 1). Following

the initial virtual edges to reach a phase boundary, we concatenate

the semi-path from the source to the intermediate node, followed

by the semi-path from the intermediate node to the destination.

Depending on the current phase and the source-destination pair,

we either route via a single-basis (SB) path or a hop-efficient (HE)

path. The routing scheme always selects a HE semi-path when one

is available, and otherwise it selects a SB path. We describe both

path types below.

Single-basis paths - The SB path, for a given (𝑞, 𝑎, 𝑏) is formed

as follows: First, we define the distance vector 𝒅 = 𝑏 − 𝑎, as well

as the basis 𝑌 = (𝑣 (𝑞), 𝑣 (𝑞 + 1), ..., 𝑣 (𝑞 + ℎ)). Note that the vectors
in the basis 𝑌 are those used to form the ℎ + 1 phases beginning

with phase 𝑞. Then, we find 𝒔 = 𝑌−1𝒅. Over the next ℎ + 1 phases,

for every timeslot 𝑡 ′ ≡ (𝑝 ′, 𝑠 ′), if 𝑠 ′ = 𝒔𝑝′ , the physical edge is

traversed. Otherwise, the virtual edge is traversed. This strategy

corresponds to traversing 𝒅 through its decomposition in basis 𝑌 ,

beginning at node 𝑎 and ending at node 𝑏.

This algorithm for SB paths completes within ℎ + 1 phases. How-
ever, to ensure that both SB and HE paths take ℎ + 1 +𝑄 phases to

complete, following this virtual edges are traversed for a further

𝑄 phases. Note that an SB path may have fewer than ℎ + 1 hops,

although this becomes increasingly rare as 𝑁 grows without bound.

Hop-efficient paths - A HE path, is formed as follows: First, for

ℎ + 1 phases, only virtual edges are traversed. This ensures that

the physical hops of HE and SB paths beginning during the same

phase 𝑞 use disjoint sets of vectors (assuming 𝑛 > ℎ + 1 + 𝑄),

which simplifies later analysis. Following this initial buffer period,

ℎ phases are selected out of the next𝑄 phases, and one physical hop

is taken in each selected phase. During all other timeslots within

the 𝑄 phases, virtual hops are taken.

3
The mnemonic is that 𝑝 stands for “phase number”, not “prime number”. We beg the

forgiveness of readers who find it confusing that the size of the prime field is denoted

by 𝑛, not 𝑝 .

1349

STOC ’22, June 20–24, 2022, Rome, Italy Daniel Amir, Tegan Wilson, Vishal Shrivastav, Hakim Weatherspoon, Robert Kleinberg, and Rachit Agarwal

For a given starting phase 𝑞 and node 𝑎, there are
(𝑄
ℎ

)
(𝑛 − 1)ℎ

possible HE paths. Recall that we would like 𝛿𝑁 destinations to

be reachable by HE paths. Ignoring for now the possibility of des-

tinations reachable by multiple HE paths, we set 𝑄 to the lowest

integer value such that:(
𝑄

ℎ

)
(𝑛 − 1)ℎ ≥ 𝛿𝑁 ⇐=

(
𝑄

ℎ

)
≥ 𝛿𝑛

Note that for this value of 𝑄 ,
(𝑄−1

ℎ

)
< 𝛿𝑛. For some (𝑞, 𝑎, 𝑏), more

than one HE path may exist. In this case, one of these paths is

arbitrarily selected; this selection does not affect our analysis.

4.4 Latency-Throughput Tradeoff of VBS
4.4.1 Latency. A VBS path begins with at most 𝑛 − 2 virtual edges

traversed until a phase boundary is reached. Following this, the first

semi-path immediately begins, followed by the second semi-path.

Because both SB andHE paths are defined to takeℎ+1+𝑄 phases, the

total maximum latency of VBS paths is (𝑛−2) +2(𝑛−1) (ℎ+1+𝑄) =
(𝑛 − 1) (3 + 2ℎ + 2𝑄) − 1.

4.4.2 Throughput.

Lemma 4. Let 𝑅 be the VBS routing scheme for a given 𝑁 , ℎ, and 𝛿 ,
such that 𝛿 ≤ 1

4(ℎ+1) (1+ 1

2ℎ
)2 . For all demand functions 𝐷 requesting

throughput at most 1

2(ℎ+1−𝜀) for 𝜀 =
1

4
𝛿 , the flow 𝑓 (𝑅, 𝐷) is feasible.

Proof. Consider an arbitrary demand function 𝐷 requesting

throughput at most 𝑟 , and consider an arbitrary physical edge

𝑒 ∈𝑊
phys

from (𝑖, 𝑡𝑒) to (𝑗, 𝑡𝑒 + 1), where 𝑡𝑒 is the timeslot during

which the edge begins. Let 𝑡𝑒 ≡ (𝑝𝑒 , 𝑠𝑒) such that 𝑝𝑒 is the phase

in the schedule corresponding to 𝑡𝑒 , and 𝑠𝑒 is the scale factor used

during 𝑡𝑒 . We wish to show that 𝐹 (𝑓 (𝑅, 𝐷), 𝑒) ≤ 1.

As in our proof of Lemma 2, we begin by inflating 𝐷 into 𝐷 ′
.

Similarly, we define 𝑅′
, the routing protocol for semi-paths, and

we decompose 𝑓 (𝑅, 𝐷 ′) into 𝑓 (𝑅′, 𝐷 ′
𝑎→𝑏

) and 𝑓 (𝑅′, 𝐷 ′
𝑏→𝑐

). Note
that because semi-paths begin only on phase boundaries, 𝑅′

does

not strictly follow our definition for an oblivious routing scheme.

Instead, we define 𝑅′
𝑎,𝑏,𝑞

using phases 𝑞, rather than timeslots 𝑡 , for

the domain. The paths used for 𝑅′
𝑎,𝑏,𝑞

begin during the first timeslot

of phase 𝑞. This is reflective of the definition of semi-paths in VBS.

To generate 𝐷 ′
𝑎→𝑏

, note that 𝑅 first batches (𝑎, 𝑏, 𝑡) triples over
the 𝑛 − 1 timeslots preceding an epoch boundary, before sampling

intermediate nodes uniformly. Therefore, for all (𝑞, 𝑎, 𝑏)

𝐷 ′
𝑎→𝑏

(𝑞, 𝑎, 𝑏) = 1

𝑁

∑
𝑡 ∈[𝑛−1]

∑
𝑐∈[𝑁]

𝐷 ′(𝑞(𝑛 − 1) − 𝑡, 𝑎, 𝑐) = (𝑛 − 1)𝑟
𝑁

Similarly, because semi-paths from an intermediate node to the

destination always begin exactlyℎ+1+𝑄 phases after the beginning

of the first semi-path, we can define 𝐷 ′
𝑏→𝑐

(𝑡, 𝑏, 𝑐) as follows:

𝐷 ′
𝑏→𝑐

(𝑞,𝑏, 𝑐) =
1

𝑁

∑
𝑡 ∈[𝑛−1]

∑
𝑐∈[𝑁]

𝐷 ′((𝑞 − ℎ − 1 −𝑄) (𝑛 − 1) − 𝑡, 𝑎, 𝑐) = (𝑛 − 1)𝑟
𝑁

Note that 𝐷 ′
𝑎→𝑏

= 𝐷 ′
𝑏→𝑐

= 𝐷𝐴𝐿𝐿
, where 𝐷𝐴𝐿𝐿

is the uniform

all-to-all demand function 𝐷𝐴𝐿𝐿 (𝑞, 𝑎, 𝑏) = (𝑛−1)𝑟
𝑁

for all (𝑞, 𝑎, 𝑏) ∈
Z × [𝑁] × [𝑁]. Therefore, 𝐹 (𝑓 (𝑅, 𝐷), 𝑒) ≤ 2𝐹 (𝑓 (𝑅′, 𝐷𝐴𝐿𝐿), 𝑒).

To calculate 𝐹 (𝑓 (𝑅′, 𝐷𝐴𝐿𝐿), 𝑒), we compute the number of (𝑞, 𝑎, 𝑏)
triples that traverse edge 𝑒 . We calculate this number as follows:

First, we calculate #𝑆𝐵 , which represents the number of (𝑞, 𝑎, 𝑏)
triples that have an SB path that traverses edge 𝑒 . Then, we calculate

#𝑚𝑖𝑠𝑠 , the number of such triples that have an HE path available

(and thus do not traverse e). Finally, we determine #𝐻𝐸 , the number

of triples that traverse 𝑒 using an HE path. The total flow traversing

edge 𝑒 is then 𝐹 (𝑓 (𝑅′, 𝐷𝐴𝐿𝐿), 𝑒) = (𝑛−1)𝑟
𝑁

(#𝑆𝐵 − #𝑚𝑖𝑠𝑠 + #𝐻𝐸).
To find #𝑆𝐵 , we use reasoning similar to that used in Lemma 2.

In order for a given (𝑞, 𝑎, 𝑏) to have an SB path that traverses edge

𝑒 , the SB path for (𝑞, 𝑎, 𝑏) must reach node (𝑖, 𝑡), then traverse edge

𝑒 . The only values of 𝑞 for which this is possible are those in the

range 𝑞𝑒 − ℎ ≤ 𝑞 ≤ 𝑞𝑒 . For each of these 𝑞, we can generate 𝑛ℎ

distinct (𝑞, 𝑎, 𝑏) triples that have SB paths that traverse edge 𝑒 as

follows. First, select an arbitrary 𝒔 such that 𝑠𝑞𝑒−𝑞 = 𝑠𝑒 . Then, set

𝑎 = 𝒊 − Σ
𝑞𝑒−1
𝑞′=𝑞 𝑠𝑞

′−𝑞𝑣 (𝑞′), and 𝑏 = 𝑎 + Σ
𝑞+ℎ
𝑞′=𝑞𝑠𝑞

′−𝑞𝑣 (𝑞′). In this case,

𝒔 corresponds to a distance vector between 𝑎 and 𝑏, expressed in

terms of the basis used for SB paths starting in phase 𝑞. Because of

how 𝑎 is set, it is clear that the SB path for (𝑞, 𝑎, 𝑏) must traverse

(𝑖, 𝑡). In addition, because 𝑠𝑞𝑒−𝑞 = 𝑠𝑒 , the SB path will traverse edge

𝑒 instead of another edge during the same phase.

For a given 𝑞, there are 𝑛ℎ possible values for 𝒔, because all but
one of its ℎ + 1 elements can be set to any value in [𝑛]. There are
(ℎ + 1) possible values for 𝑞, giving a total of #𝑆𝐵 = (ℎ + 1)𝑛ℎ

To find #𝑚𝑖𝑠𝑠 , we compare the distance vectors of (𝑞, 𝑎, 𝑏) triples
that have SB paths which traverse 𝑒 with those of (𝑞, 𝑎, 𝑏) triples
that have valid HE paths. Each vector found in the overlap between

these two sets corresponds to one triple that contributes to #𝑚𝑖𝑠𝑠 . To

reason about the former set of vectors, we return to the construction

of 𝒔 used to find #𝑆𝐵 . For a given starting phase 𝑞, each 𝒔 such
that 𝒔𝑞𝑒−𝑞 = 𝑠𝑒 represents a distance vector that can traverse 𝑒 ,

expressed in terms of the basis used for SB paths starting in phase

𝑞. We can construct this basis as 𝑌 = (𝑣 (𝑞), 𝑣 (𝑞 + 1), ..., 𝑣 (𝑞 + ℎ).
For each 𝒔, 𝒅 = 𝑌 𝒔 is the same distance vector expressed using the

elementary basis. The range of distance vectors 𝒅 reachable while

traversing 𝑒 forms 𝐷𝑒 , an ℎ-dimensional affine subspace of Fℎ+1𝑛

that is parallel to𝑊𝑒 , the linear subspace spanned by 𝑌 \ {𝑣 (𝑞𝑒)}.
Next, we consider which triples have valid HE paths. For a given

starting phase 𝑞, there are 𝑄 phases which are considered for form-

ing HE paths. Let 𝐼 be a set of ℎ phase numbers chosen from these𝑄

phases, and let 𝑉 (𝐼) be the linear subspace spanned by the vectors

corresponding to the phase numbers in 𝐼 . There are
(𝑄
ℎ

)
ways of

choosing such a set 𝐼 . For each possible choice, 𝑉 (𝐼) forms an ℎ-

dimensional linear subspace in 𝐹ℎ+1𝑛 , corresponding to the distance

vectors reachable via HE paths using the chosen phases. (Note that

𝑉 (𝐼) must be ℎ-dimensional because every ℎ distinct Vandermonde

vectors are linearly independent.) Because𝑉 (𝐼) and𝑊𝑒 are spanned

by distinct sets of ℎ Vandermonde vectors, these linear subspaces

are not equivalent, implying that𝑉 (𝐼) and𝐷𝑒 are not parallel. Thus,

𝑉 (𝐼) ∩ 𝐷𝑒 is an affine subspace with dimension ℎ − 1 and contains

𝑛ℎ−1 distance vectors.
Some distance vectors lie in more than one such intersection.

To avoid overcounting #𝑚𝑖𝑠𝑠 , we must remove at least this many

vectors from our count. Given two sets 𝐼 and 𝐽 of ℎ chosen phase

numbers, 𝑉 (𝐼) and 𝑉 (𝐽) form two different linear subspaces of

1350

Optimal Oblivious Reconfigurable Networks STOC ’22, June 20–24, 2022, Rome, Italy

Fℎ+1𝑛 . As linear subspaces, both 𝐼 and 𝐽 contain the zero vector, as

does the (ℎ − 1)-dimensional 𝐼 ∩ 𝐽 . 𝐷𝑒 does not contain the zero

vector, so 𝐷𝑒 ∩ 𝐼 ∩ 𝐽 can only be (ℎ − 2)-dimensional, containing

𝑛ℎ−2 distance vectors. There are fewer than
(𝑄
ℎ

)2
ways of choosing

two distinct sets 𝐼 and 𝐽 .

Thus, for a given starting 𝑞, there are fewer than

(𝑄
ℎ

)
𝑛ℎ−1 −(𝑄

ℎ

)2
𝑛ℎ−2 distance vectors in the overlap between 𝐷𝑒 and the union

of all possible 𝑉 (𝐼). Because there are ℎ + 1 possibilities for the

starting 𝑞, this gives the following lower bound for #𝑚𝑖𝑠𝑠 :

#𝑚𝑖𝑠𝑠 > (ℎ + 1)
((
𝑄

ℎ

)
𝑛ℎ−1 −

(
𝑄

ℎ

)
2

𝑛ℎ−2
)

> (ℎ + 1)
(
𝛿𝑛ℎ − 𝛿2𝑛ℎ

(
𝑄

𝑄 − ℎ

)
2

)
To find #𝐻𝐸 , note that a given (𝑞, 𝑎, 𝑏) can only traverse edge 𝑒 if

𝑞𝑒 − ℎ − 𝑄 ≤ 𝑞 < 𝑞𝑒 − ℎ, since 𝑞𝑒 must be in the set of 𝑄 phases

considered for HE paths for (𝑞, 𝑎, 𝑏). For a given 𝑞, we can construct

an HE path by selecting ℎ − 1 additional phases from the 𝑄 − 1

remaining phases, and then selecting one of the 𝑛 − 1 edges within

that phase to traverse. Some of these paths may lead to the same

destination, causing an overcount, but it is fine to overcount #𝐻𝐸 .

#𝐻𝐸 ≤ 𝑄

(
𝑄 − 1

ℎ − 1

)
(𝑛 − 1)ℎ−1 < 𝛿ℎ𝑛ℎ

𝑄

𝑄 − ℎ

Having found #𝑆𝐵 , #𝑚𝑖𝑠𝑠 , and #𝐻𝐸 , we can now bound 𝐹 (𝑓 (𝑅, 𝐷), 𝑒):

𝐹 (𝑓 (𝑅, 𝐷), 𝑒) ≤ 2

(𝑛 − 1)𝑟
𝑁

(#𝑆𝐵 − #𝑚𝑖𝑠𝑠 + #𝐻𝐸)

< 2𝑟 (ℎ + 1)
(
1 − 𝛿

(
1 − ℎ

ℎ + 1

𝑄

𝑄 − ℎ

)
+ 𝛿2

(
𝑄

𝑄 − ℎ

)
2

)
For 𝑄 ≥ 2ℎ2 − ℎ,

𝑄

𝑄−ℎ ≤ ℎ+ 1

2

ℎ
. This gives:

𝐹 (𝑓 (𝑅, 𝐷), 𝑒) < 2𝑟 (ℎ + 1) ©«1 − 𝛿

(
1 − ℎ

ℎ + 1

ℎ + 1

2

ℎ

)
+ 𝛿2

(
ℎ + 1

2

ℎ

)
2ª®¬

≤ 1

ℎ + 1 − 𝜀
(ℎ + 1 − 𝜀) = 1

Note that because of how we set 𝜀 and restrict 𝛿 , 𝜀 ≤ 1

2
𝛿 − (ℎ +

1)𝛿2 (1 + 1

2ℎ
)2. Because the amount of flow traversing any physical

edge 𝑒 is less than 1, the flow 𝑓 (𝑅, 𝐷) is feasible.
□

4.5 Tightness of Upper Bound
Theorem 3. For all 𝑟 ∈ (0, 1/2], there is a VBS design or an EBS
design which guarantees throughput 𝑟 and uses maximum latency

𝐿𝑚𝑎𝑥 ≤ 𝑂 (𝐿∗ (𝑟, 𝑁)) . (3)

Proof. The VBS design of order ℎ with parameter 𝛿 gives maxi-

mum latency 𝐿 ≤ (ℎ + 1) (𝑛 − 1) +𝑄 (𝑛 − 1) for ℎ =
⌊
1

2𝑟

⌋
,

(𝑄
ℎ

)
≥ 𝛿𝑛,

as long as 𝛿 ≤ 1

4(ℎ+1) (1+ 1

2ℎ
)2 . Let 𝜀 = ℎ + 1 − 1

2𝑟 , and set 𝛿 = 4𝜀.

We chose 𝑄 such that

(𝑄−1
ℎ

)
< 𝛿𝑛 and

(𝑄
ℎ

)
≥ 𝛿𝑛. Then

(𝑄
ℎ

)
<

𝛿𝑛
𝑄

𝑄−ℎ ≤ 𝛿
ℎ+ 1

2

ℎ
, due to 𝑄 ≥ 2ℎ2 − ℎ. Hence 𝑄 ≤ ℎ

(
𝛿𝑛 ℎ

ℎ+(1/2)

)
1/ℎ

.

We upper bound the max latency of VBS in the following way.

𝐿𝑚𝑎𝑥 ≤ max{(ℎ+1) (𝑛−1) +𝑄 (𝑛−1), (ℎ+1) (𝑛−1)+(2ℎ2−ℎ) (𝑛−1)}

≤ 2(ℎ + 1) (𝑛 − 1) + 2ℎ2 (𝑛 − 1) + ℎ
(
4𝜀𝑛

ℎ + 1

2

ℎ

)
1/ℎ

(𝑛 − 1)

≤ 𝑂 (ℎ[ℎ𝑁 1/(ℎ+1) + (𝜀𝑁)1/ℎ])
For sufficiently large 𝑁 (determined by 𝜀 and ℎ, both functions of

𝑟), the second term will dominate. Thus, for large N:

𝐿𝑚𝑎𝑥 ≤ 𝑂

(
ℎ

[
(𝜀𝑁)1/ℎ + 𝑁 1/(ℎ+1)

])
= 𝑂

(
𝐿∗ (𝑟, 𝑁)

)
.

Note that by Lemma 4, VBS only gives a tight latency bound when

4𝜀 = 𝛿 ≤ 1

4(ℎ+1) (1+ 1

2ℎ
)2 . However when 𝜀 is greater than this value,

we can use EBS instead. By Lemma 3, EBS gives a factor 𝐶 tight

bound when 𝜀 > 2

√
2ℎ
𝜋

(
2𝑒
𝐶

)ℎ
. We check to make sure that there

exists a constant 𝐶 which works for all 𝜀 > 1

4
· 1

4(ℎ+1) (1+ 1

2ℎ
)2

2

√
2ℎ

𝜋

(
2𝑒

𝐶

)ℎ
≤ 1

4

· 1

4(ℎ + 1)
(
1 + 1

2ℎ

)
2

𝐶 ≥ 𝑂
©«
√
ℎ
1/ℎ

(
(ℎ + 1)

(
2ℎ + 1

2ℎ

)
2

)
1/ℎª®¬ = 𝑂 (1)

Since there exists such a factor 𝐶 , the following holds for EBS in

the regions of interest.

𝐿𝑚𝑎𝑥 ≤ 𝑂

(
ℎ

[
(𝜀𝑁)1/ℎ + 𝑁 1/(ℎ+1)

])
= 𝑂

(
𝐿∗ (𝑟, 𝑁)

)
□

5 CONCLUSION AND OPEN QUESTIONS
In this paper we introduced a mathematical model of oblivious

reconfigurable network design and investigated the optimal la-

tency attainable for designs satisfying any given throughput guar-

antee, 𝑟 . We proved that the best maximum latency achievable

is Ω(𝐿∗ (𝑟, 𝑁)), for 𝐿∗ (𝑟, 𝑁) = ℎ

(
𝑁 1/(ℎ+1) + (𝜀𝑁)1/ℎ

)
. We also

present two ORN designs, EBS and VBS. For every constant 𝑟 , we

show there exist infinitely many 𝑁 for which either EBS or VBS

achieves a maximum latency of O(𝐿∗ (𝑟, 𝑁)).
Our investigation of the throughput-latency tradeoff for ORN

designs affords numerous opportunities for follow-up work. In this

section we sketch some of the most appealing future directions.

Universal connection schedules - EBS and VBS both use

connection schedules tuned based on the targeted throughput rate

𝑟 . Is there a single connection schedule that permits achieving the

Pareto-optimal latency for a large range of of 𝑟 , or perhaps even

for every value of 𝑟 , merely by varying the routing scheme?

We conjecture that the following connection schedule, inspired

by [24], supports ORN designs that are Pareto-optimal with respect

to the tradeoff between worst-case throughput and average latency,
for every value of 𝑟 , when 𝑁 is a prime power. Let F denote the
finite field with 𝑁 elements, and let 𝑥 denote a primitive root in F.
Define the sequence of permutations 𝜋0, 𝜋1, . . . by specifying that

𝜋𝑘 (𝑖) = 𝑖 + 𝑥𝑘 for all 𝑖 ∈ F, 𝑘 ∈ N. We have experimented with this

family of connection schedules when F is a prime field and 2 is a

1351

STOC ’22, June 20–24, 2022, Rome, Italy Daniel Amir, Tegan Wilson, Vishal Shrivastav, Hakim Weatherspoon, Robert Kleinberg, and Rachit Agarwal

primitive root, for values of 𝑁 ranging from 11 up to around 300.

We numerically verified that in all cases we tested, for each value

of 𝑟 ranging from
1

2
down to roughly

1

log𝑛
, there is an oblivious

routing scheme guaranteeing throughput 𝑟 , whose average latency

is within a constant factor of matching our lower bound. In fact, the

average latency in most cases that we tested was moderately less

than EBS’s. However, thus far we have not succeeded in proving

that this pattern persists for infinitely many 𝑁 .

Bridging the gap between theory and practice - Our model

of ORNs uses idealized assumptions that gloss over important de-

tails that affect the performance of ORNs in practice. A more re-

alistic model would not equate expected congestion with actual

congestion. This would necessitate grappling with the issues of

queueing and congestion control. It also opens the Pandora’s box of

non-oblivious routing, since a frame that was intended to be trans-

mitted on link (𝑢, 𝑣) but finds that link blocked due to congestion

must either be transmitted in a different timeslot, or on a different

link in the same timeslot; in either case the frame’s path in the vir-

tual topology differs from the intended one. An appealing middle

ground between fully centralized control (as in classical models of

circuit-switched networks) and a fully oblivious model (as in our

paper) could be a network design with a fully oblivious connection

schedule coupled with a partially-adaptive routing scheme based

on local information such as queue lengths at traversed nodes.

Our model also fails to account for (possibly heterogeneous)

propagation delays. The model could be enhanced to take propaga-

tion delay into account by adjusting the virtual topology. Rather

than connecting physical edges from (𝑖, 𝑠) to (𝑗, 𝑠 + 1), they could

instead connect to (𝑗, 𝑠 + 𝑑𝑖 𝑗), where 𝑑𝑖 𝑗 is a whole number repre-

senting the propagation delay from 𝑖 to 𝑗 in units of timeslots. As

in our basic model, nodes of the virtual topology in this enhanced

model would be constrained to belong to at most one incoming and

at most one outgoing physical edge, though if 𝑑𝑖 𝑗 varies with 𝑖 and

𝑗 then the set of physical edges would no longer be described by a

sequence of permutations.

Supporting multiple traffic classes - In this paper we sought

to optimize the worst-case latency for network designs that guar-

antee a specified rate of throughput. In practice, flows co-existing

on a network can differ markedly in their latency sensitivity. Can

EBS, VBS, or other ORN designs be adapted to simultaneously offer

users a menu of options targeting different points on the latency-

throughput tradeoff curve? What guarantees can such network

designs provide to the different classes of traffic they serve?

ACKNOWLEDGEMENTS
This work was supported in part by NSF grants CCF-1512964, CSR-

1704742, CNS-2047283, and DBI-2019674, a Google faculty research

scholar award, a Microsoft Investigator Fellowship, and a Sloan

fellowship. Part of this work was done while some authors were

visiting the University of Washington.

REFERENCES
[1] Daniel Amir, Tegan Wilson, Vishal Shrivastav, Hakim Weatherspoon, Robert

Kleinberg, and Rachit Agarwal. 2021. Optimal Oblivious Reconfigurable Net-

works. CoRR abs/2111.08780 (2021). https://doi.org/10.48550/arXiv.2111.08780

[2] David L. Applegate and Edith Cohen. 2003. Making intra-domain routing robust

to changing and uncertain traffic demands: understanding fundamental tradeoffs.

SIGCOMM ’03. https://doi.org/10.1145/863955.863991

[3] Yossi Azar, Edith Cohen, Amos Fiat, Haim Kaplan, and Harald Räcke. 2003.

Optimal Oblivious Routing in Polynomial Time. STOC ’03. https://doi.org/

10.1145/780542.780599

[4] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel Cletheroe, Istvan Haller,

Krzysztof Jozwik, Fotini Karinou, Sophie Lange, Kai Shi, Benn Thomsen, et al.

2020. Sirius: A Flat Datacenter Network with Nanosecond Optical Switching.

SIGCOMM ’20. https://doi.org/10.1145/3387514.3406221

[5] Marcin Bienkowski, Miroslaw Korzeniowski, and Harald Räcke. 2003. A Practical

Algorithm for Constructing Oblivious Routing Schemes. SPAA ’03. https://

doi.org/10.1145/777412.777418

[6] Cheng-Shang Chang, Duan-Shin Lee, and Yi-Shean Jou. 2002. Load balanced

Birkhoff-von Neumann switches, part I: one-stage buffering. Computer Commu-
nications 25, 6 (2002), 611–622. https://doi.org/10.1016/S0140-3664(01)00427-3

[7] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. 2004. A tight bound on

approximating arbitrary metrics by tree metrics. J. Comput. Syst. Sci. 69, 3 (2004).
https://doi.org/10.1145/780542.780608

[8] Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Hajabdolali

Bazzaz, Vikram Subramanya, Yeshaiahu Fainman, George Papen, and Amin

Vahdat. 2010. Helios: a hybrid electrical/optical switch architecture for modular

data centers. SIGCOMM ’10. https://doi.org/10.1145/1851275.1851223

[9] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil Devanur, Janard-

han Kulkarni, Gireeja Ranade, Pierre-Alexandre Blanche, Houman Rastegarfar,

Madeleine Glick, and Daniel Kilper. 2016. ProjecToR: Agile Reconfigurable Data

Center Interconnect. SIGCOMM ’16. https://doi.org/10.1145/2934872.2934911

[10] AnupamGupta, Mohammad Taghi Hajiaghayi, and Harald Räcke. 2006. Oblivious

network design. SODA ’06.

[11] Mohammad Taghi Hajiaghayi, Robert D. Kleinberg, Frank Thomson Leighton,

and Harald Räcke. 2006. New lower bounds for oblivious routing in undirected

graphs. SODA ’06.

[12] Chris Harrelson, Kirsten Hildrum, and Satish Rao. 2003. A polynomial-time

tree decomposition to minimize congestion. SPAA ’03. https://doi.org/10.1145/

777412.777419

[13] Prahladh Harsha, Thomas P. Hayes, Hariharan Narayanan, Harald Räcke, and

Jaikumar Radhakrishnan. 2008. Minimizing average latency in oblivious routing.

SODA ’08.

[14] Christos Kaklamanis, Danny Krizanc, and Thanasis Tsantilas. 1991. Tight Bounds

for Oblivious Routing in the Hypercube. Math. Syst. Theory 24, 4 (1991), 223–232.

https://doi.org/10.1145/97444.97453

[15] Jongman Kim, Chrysostomos Nicopoulos, Dongkook Park, Reetuparna Das, Yuan

Xie, Vijaykrishnan Narayanan, Mazin S. Yousif, and Chita R. Das. 2007. A Novel

Dimensionally-Decomposed Router for on-Chip Communication in 3D Architec-

tures. ISCA ’07. https://doi.org/10.1145/1273440.1250680

[16] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Kleinberg, Petr La-

pukhov, Chiunlin Lim, and Robert Soulé. 2018. Semi-Oblivious Traffic Engineer-

ing: The Road Not Taken. NSDI ’18.

[17] He Liu, Feng Lu, Alex Forencich, Rishi Kapoor, Malveeka Tewari, Geoffrey M.

Voelker, George Papen, Alex C. Snoeren, and George Porter. 2014. Circuit Switch-

ing Under the Radar with REACToR. NSDI ’14.

[18] William M. Mellette, Rajdeep Das, Yibo Guo, Rob McGuinness, Alex C. Snoeren,

and George Porter. 2020. Expanding across time to deliver bandwidth efficiency

and low latency. NSDI ’20.

[19] William M Mellette, Rob McGuinness, Arjun Roy, Alex Forencich, George Pa-

pen, Alex C Snoeren, and George Porter. 2017. Rotornet: A scalable, low-

complexity, optical datacenter network. SIGCOMM ’17. https://doi.org/10.1145/

3098822.3098838

[20] George Porter, Richard Strong, Nathan Farrington, Alex Forencich, Pang Chen-

Sun, Tajana Rosing, Yeshaiahu Fainman, George Papen, and Amin Vahdat. 2013.

Integrating Microsecond Circuit Switching into the Data Center. SIGCOMM ’13.

https://doi.org/10.1145/2486001.2486007

[21] H. Räcke. 1975. Minimizing congestion in general networks. FOCS ’75. https:

//doi.org/10.1109/SFCS.2002.1181881

[22] Harald Räcke. 2008. Optimal Hierarchical Decompositions for Congestion Mini-

mization in Networks. STOC ’08. https://doi.org/10.1145/1374376.1374415

[23] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani, Paolo Costa, Ki Suh Lee, Han

Wang, Rachit Agarwal, and Hakim Weatherspoon. 2019. Shoal: A Network

Architecture for Disaggregated Racks. NSDI ’19.

[24] Edward Tremel, Ken Birman, Robert Kleinberg, and Márk Jelasity. 2019. Anony-

mous, Fault-Tolerant Distributed Queries for Smart Devices. ACM Trans. Cyber
Phys. Syst. 3, 2 (2019), 16:1–16:29. https://doi.org/10.1145/3204411

[25] Leslie G. Valiant. 1982. A Scheme for Fast Parallel Communication. SIAM J.
Comput. 11, 2 (1982), 350–361. https://doi.org/10.1137/0211027

[26] Leslie G Valiant and Gordon J Brebner. 1981. Universal schemes for parallel

communication. STOC ’81. https://doi.org/10.1145/800076.802479

[27] Guohui Wang, David G. Andersen, Michael Kaminsky, Konstantina Papagiannaki,

T.S. Eugene Ng, Michael Kozuch, and Michael Ryan. 2010. C-Through: Part-Time

Optics in Data Centers. SIGCOMM ’10. https://doi.org/10.1145/1851275.1851222

1352

https://doi.org/10.48550/arXiv.2111.08780
https://doi.org/10.1145/863955.863991
https://doi.org/10.1145/780542.780599
https://doi.org/10.1145/780542.780599
https://doi.org/10.1145/3387514.3406221
https://doi.org/10.1145/777412.777418
https://doi.org/10.1145/777412.777418
https://doi.org/10.1016/S0140-3664(01)00427-3
https://doi.org/10.1145/780542.780608
https://doi.org/10.1145/1851275.1851223
https://doi.org/10.1145/2934872.2934911
https://doi.org/10.1145/777412.777419
https://doi.org/10.1145/777412.777419
https://doi.org/10.1145/97444.97453
https://doi.org/10.1145/1273440.1250680
https://doi.org/10.1145/3098822.3098838
https://doi.org/10.1145/3098822.3098838
https://doi.org/10.1145/2486001.2486007
https://doi.org/10.1109/SFCS.2002.1181881
https://doi.org/10.1109/SFCS.2002.1181881
https://doi.org/10.1145/1374376.1374415
https://doi.org/10.1145/3204411
https://doi.org/10.1137/0211027
https://doi.org/10.1145/800076.802479
https://doi.org/10.1145/1851275.1851222

	Abstract
	1 Introduction
	1.1 Our Model and Results
	1.2 Techniques
	1.3 Related work

	2 Definitions
	2.1 Allowing degree d>1 in a timeslot

	3 Lower Bound
	3.1 Lower Bound Theorem Proof

	4 Upper Bound
	4.1 Elementary Basis Scheme
	4.2 Latency-Throughput Tradeoff of EBS
	4.3 Vandermonde Bases Scheme
	4.4 Latency-Throughput Tradeoff of VBS
	4.5 Tightness of Upper Bound

	5 Conclusion and Open Questions
	References

