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Abstract—The global network of data centers is emerging as
an important distributed systems paradigm—commodity clusters
running high-performance applications, connected by high-speed
“lambda” networks across hundreds of milliseconds of network
latency. Packet loss on long-haul networks can cripple applications
and protocols: A loss rate as low as 0.1% is sufficient to reduce
TCP/IP throughput by an order of magnitude on a 1-Gb/s link
with 50-ms one-way latency. Maelstrom is an edge appliance that
masks packet loss transparently and quickly from intercluster
protocols, aggregating traffic for high-speed encoding and using a
new forward error correction scheme to handle bursty loss.

Index Terms—Data centers, forward error correction (FEC),
TCP/IP.

I. INTRODUCTION

T HE EMERGENCE of commodity clusters and data cen-
ters has enabled a new class of globally distributed high-

performance applications that coordinate over vast geographical
distances. For example, a financial firm’s New York City data
center may receive real-time updates from a stock exchange in
Switzerland, conduct financial transactions with banks in Asia,
cache data in London for locality, and mirror it to Kansas for
disaster-tolerance.

To interconnect these bandwidth-hungry data centers across
the globe, organizations are increasingly deploying private
“lambda” networks. Raw bandwidth is ubiquitous and cheaply
available in the form of existing “dark fiber.” However, running
and maintaining high-quality loss-free networks over this fiber
is difficult and expensive. Though high-capacity optical links
are almost never congested, they drop packets for numerous
reasons—dirty/degraded fiber [1], misconfigured/malfunc-
tioning hardware [2], [3], and switching contention [4], for
example—and in different patterns, ranging from singleton
drops to extended bursts [5], [6]. Noncongestion loss has
been observed on long-haul networks as well maintained as
Abilene/Internet2 and National LambdaRail [2], [3], [6], [7].

The inadequacy of commodity TCP/IP in high bandwidth-
delay product networks is extensively documented [8]–[10].
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TCP/IP has three major problems when used over such net-
works. First, TCP/IP suffers throughput collapse if the network
is even slightly prone to packet loss. Conservative flow control
mechanisms designed to deal with the systematic congestion of
the commodity Internet react too sharply to ephemeral loss on
overprovisioned links—a single packet in 10 000 is enough to
reduce TCP/IP throughput to a third over a 50-ms gigabit link,
and one in a thousand drops it by an order of magnitude.

Second, real-time or interactive applications are impacted by
the reliance of reliability mechanisms on acknowledgments and
retransmissions, limiting the latency of packet recovery to at
least the round-trip time (RTT) of the link. If delivery is se-
quenced, as in TCP/IP, each lost packet acts as a virtual “road-
block” in the first-in–first-out (FIFO) channel until it is recov-
ered. Third, TCP/IP requires massive buffers at the communi-
cating end-hosts to fully exploit the bandwidth of a long-dis-
tance high-speed link, even in the absence of packet loss.

Deploying new loss-resistant alternatives to TCP/IP is not
feasible in corporate data centers, where standardization is
the key to low and predictable maintenance costs; neither is
eliminating loss events on a network that could span thousands
of miles. Accordingly, there is a need to mask loss on the link
from the commodity protocols running at end-hosts, and to do
so rapidly and transparently: rapidly, because recovery delays
for lost packets translate into dramatic reductions in applica-
tion-level throughput; transparently, because applications and
OS networking stacks in commodity data centers cannot be
rewritten from scratch.

Forward error correction (FEC) is a promising solution for
reliability over long-haul links [11]. Packet recovery latency is
independent of the RTT of the link. While FEC codes have been
used for decades within link-level hardware solutions, faster
commodity processors have enabled packet-level FEC at end-
hosts [12]. End-to-end FEC is very attractive for communica-
tion between data centers: It is inexpensive, easy to deploy and
customize, and does not require specialized equipment in the
network linking the data centers. However, end-host FEC has
two major issues. First, it is not transparent, requiring modifi-
cation of the end-host application/OS. Second, it is not neces-
sarily rapid. FEC works best over high, stable traffic rates and
performs poorly if the data rate in the channel is low and spo-
radic [13], as in a single end-to-end channel.

In this paper, we present the Maelstrom Error Correction ap-
pliance, a rack of proxies residing between a data center and its
WAN link (see Fig. 1). Maelstrom encodes FEC packets over
traffic flowing through it and routes them to a corresponding ap-
pliance at the destination data center, which decodes them and
recovers lost data. Maelstrom is completely transparent. It does
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Fig. 1. Maelstrom communication path.

not require modification of end-host software and is agnostic
to the network connecting the data centers. Also, it eliminates
the dependence of FEC recovery latency on the data rate in any
single node-to-node channel by encoding over the aggregated
traffic leaving the data center. Additionally, Maelstrom uses a
new encoding scheme called layered interleaving, designed es-
pecially for time-sensitive packet recovery in the presence of
bursty loss.

Maelstrom’s positioning as a network appliance reflects the
physical infrastructure of modern data centers. Clean insertion
points for proxy devices exist on the high-speed lambda links
that interconnect individual data centers to each other. Mael-
strom can operate as either a passive or active device on these
links. Of the three problems of TCP/IP mentioned, Maelstrom
solves the first two—throughput collapse and real-time recovery
delays—while operating as a passive device that does not inter-
vene in the critical communication path. In active mode, Mael-
strom handles the additional problem of massive buffering re-
quirements as well, at the cost of adding a point of failure in the
network path.

Maelstrom belongs to a class of solutions known as perfor-
mance-enhancing proxies (PEPs) [14]. PEPs have been used
to transparently mitigate inefficiency at different layers in set-
tings such as satellite links and wireless networks. A number of
commercial PEP products [15], [16] perform TCP and applica-
tion-level acceleration over long-distance links. To the best of
our knowledge, our work is the first research project to examine
the use of FEC-based PEPs for communication between data
centers.

The contributions of this paper are as follows.
• We explore end-to-end FEC for long-distance communi-

cation between data centers and argue that the rate sensi-
tivity of FEC codes and the opacity of their implementa-
tions present major obstacles to their usage.

• We propose Maelstrom, a gateway appliance that trans-
parently aggregates traffic and encodes over the resulting
high-rate stream.

• We describe layered interleaving, a new FEC scheme used
by Maelstrom where, for constant encoding overhead, the
latency of packet recovery degrades gracefully as losses get
burstier.

• We discuss implementation considerations. We built two
versions of Maelstrom. One runs in user mode, while the
other runs within the Linux kernel.

• We evaluate Maelstrom on Emulab [17] and show that it
provides near-lossless TCP/IP throughput and latency over

Fig. 2. Loss rates on TeraGrid.

lossy links and recovers packets with latency independent
of the RTT of the link and the rate in any single channel.

II. MODEL

Loss Model: Packet loss typically occurs at two points in an
end-to-end communication path between two data centers, as
shown in Fig. 1—in the wide-area network connecting them
and at the receiving end-hosts. Loss in the lambda link can
occur for many reasons, as stated previously: transient conges-
tion, dirty or degraded fiber, malfunctioning or misconfigured
equipment, low receiver power, and burst switching contention
are some reasons [18], [1]–[4]. Loss can also occur at receiving
end-hosts within the destination data center. These are usually
cheap commodity machines prone to temporary overloads that
cause packets to be dropped by the kernel in bursts [13]. This
loss mode occurs with UDP-based traffic, but not with TCP/IP,
which advertises receiver windows to prevent end-host buffer
overflows.

What are typical loss rates on long-distance optical networks?
The answer to this question is surprisingly hard to determine,
perhaps because such links are a relatively recent addition to
the networking landscape and their ownership is still mostly
restricted to commercial organizations disinclined to reveal
such information. One source of information is TeraGrid [19],
an optical network interconnecting major supercomputing sites
in the U.S. TeraGrid has a monitoring framework within which
10 sites periodically send each other 1-Gb/s streams of UDP
packets and measure the resulting loss rate [20]. Each site
measures the loss rate to every other site once an hour, resulting
in a total of 90 loss-rate measurements collected across the
network every hour. Fig. 2 shows that between November 1,
2007 and January 25, 2008, 24% of all such measurements
were over 0.01%, and a surprising 14% of them were over
0.1%. After eliminating a single site (Indiana University) that
dropped incoming packets steadily at a rate of 0.44%, 14% of
the remainder were over 0.01%, and 3% were over 0.1%.

These numbers may look small in absolute terms, but they
are sufficient to bring TCP/IP throughput crashing down on
high-speed long-distance links. Conventional wisdom states that
optical links do not drop packets. Most carrier-grade optical
equipment is configured to shut down beyond bit error rates
of 10 —one out of a trillion bits. However, the reliability of
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the lambda network is clearly not equal to the sum of its op-
tical parts. In fact, it is less reliable by orders of magnitude.
As a result, applications and protocols such as TCP/IP, which
expect extreme reliability from the high-speed network, are in-
stead subjected to unexpectedly high loss rates.

Of course, these numbers reflect the loss rate specifically ex-
perienced by UDP traffic on an end-to-end path and may not
generalize to TCP packets. Also, we do not know if packets
were dropped within the optical network or at intermediate de-
vices within either data center, though it is unlikely that they
were dropped at the end-hosts. Many of the measurements lost
just one or two packets, whereas kernel/NIC losses are known
to be bursty [13]. Furthermore, loss occurred on paths where
levels of optical link utilization (determined by 20-s moving av-
erages) were consistently lower than 20%, ruling out congestion
as a possible cause, a conclusion supported by dialog with the
network administrators [21].

What are some possible causes for such high loss rates on
TeraGrid? A likely hypothesis is device clutter: The critical
communication path between nodes in different data centers
is littered with multiple electronic devices, each of which
represents a potential point of failure. Another possibility is
that such loss rates may be typical for any large-scale network
where the cost of immediately detecting and fixing failures is
prohibitively high. For example, we found through dialog with
the administrators that the steady loss rate experienced by the
Indiana University site was due to a faulty line card, and the
measurements showed that the error persisting over at least a
three-month period.

Other data points for loss rates on high-speed long-haul net-
works are provided by the backbone networks of Tier-1 ISPs.
Global Crossing reports average loss rates between 0.01% and
0.03% on four of its six interregional long-haul links for the
month of December 2007 [22]. Qwest reports loss rates of
0.01% and 0.02% in either direction on its trans-Pacific link for
the same month [23]. We expect privately managed lambdas to
exhibit higher loss rates due to the inherent tradeoff between
fiber/equipment quality and cost [24], as well as the difficulty
of performing routine maintenance on long-distance links.
Consequently, we model end-to-end paths as dropping packets
at rates of 0.01% to 1% to capture a wide range of deployed
networks.

III. EXISTING RELIABILITY OPTIONS

TCP/IP is the default reliable communication option for con-
temporary networked applications, with deep, exclusive embed-
dings in commodity operating systems and networking APIs.
Consequently, most applications requiring reliable communica-
tion over any form of network use TCP/IP.

As noted earlier, TCP/IP has three major problems when used
over high-speed long-distance networks.

1) Throughput collapse in lossy networks: TCP/IP is unable
to distinguish between ephemeral loss modes—due to tran-
sient congestion, switching errors, or bad fiber—and per-
sistent congestion. The loss of one packet out of 10 000
is sufficient to reduce TCP/IP throughput to a third of its
lossless maximum. If one packet is lost out of a thousand,
throughput collapses to a thirtieth of the maximum.

The root cause of throughput collapse is TCP/IP’s fun-
damental reliance on loss as a signal of congestion.
While recent approaches have sought to replace loss
with delay as a congestion signal [25], or to specifically
identify loss caused by noncongestion causes [26], older
variants—prominently Reno—remain ubiquitously de-
ployed. Other work such as ETEN [27] introduces explicit
feedback to the sender regarding corruption-based loss,
typically requiring intermediate routers to be modified.

2) Recovery delays for real-time applications: Conventional
TCP/IP uses positive acknowledgments and retransmis-
sions to ensure reliability. The sender buffers packets until
their receipt is acknowledged by the receiver and resends
if an acknowledgment is not received within some time pe-
riod. Hence, a lost packet is received in the form of a re-
transmission that arrives no earlier than 1.5 RTTs after the
original send event. The sender has to buffer each packet
until it is acknowledged, which takes one RTT in loss-
less operation, and it has to perform additional work to re-
transmit the packet if it does not receive the acknowledg-
ment. Also, any packets that arrive with higher sequence
numbers than that of a lost packet must be queued while
the receiver waits for the lost packet to arrive.

3) Massive buffering needs for high throughput applications:
TCP/IP uses fixed-size buffers at receivers to prevent
overflows. The sender never pushes more unacknowl-
edged data into the network than the receiver is capable of
holding. In other words, the size of the fluctuating window
at the sender is bounded by the size of the buffer at the
receiver. In high-speed long-distance networks, the quan-
tity of in-flight unacknowledged data has to be extremely
high for the flow to saturate the network. Since the size of
the receiver window limits the sending envelope, it plays
a major role in determining TCP/IP’s throughput.

The default receiver buffer sizes in many standard TCP/IP
implementations are in the range of tens of kilobytes, and con-
sequently inadequate receiver buffering is the first hurdle faced
by most practical deployments. A natural solution is to increase
the size of the receiver buffers. However, in many cases, the re-
ceiving end-host may not have the spare memory capacity to
buffer the entire bandwidth-delay product of the long-distance
network. The need for larger buffers is orthogonal to the flow
control mechanisms used within TCP/IP and impacts all vari-
ants equally.

A. Case for (and Against) FEC

FEC encoders are typically parameterized with an tuple.
For each outgoing sequence of data packets, a total of data
and error correction packets are sent over the channel, resulting
in an encoding overhead of . Significantly, redundancy infor-
mation cannot be generated and sent until all data packets are
available for sending. Consequently, the latency of packet re-
covery is determined by the rate at which the sender transmits
data. Generating error correction packets from less than data
packets at the sender is not a viable option—even though the
data rate in this channel is low, the receiver and/or network could
be operating at near full capacity with data from other senders.

FEC is also very susceptible to bursty losses [28]. Inter-
leaving [29] is a standard encoding technique used to combat
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Fig. 3. Interleaving with index 2: separate encoding for odd and even packets.

bursty loss, where error correction packets are generated from
alternate disjoint substreams of data rather than from consecu-
tive packets (see Fig. 3). For example, with an interleave index
of 3, the encoder would create correction packets separately
from three disjoint substreams: the first containing data packets
numbered , the second with data packets
numbered , and the third with data
packets numbered . Interleaving
adds burst tolerance to FEC, but exacerbates its sensitivity to
sending rate. With an interleave index of and an encoding
rate of , the sender would have to wait for
packets before sending any redundancy information.

These two obstacles to using FEC in time-sensitive set-
tings—rate sensitivity and burst susceptibility—are interlinked
through the tuning knobs. An interleave of and a rate of

provides tolerance to a burst of up to consecutive
packets. Consequently, the burst tolerance of an FEC code can
be changed by modulating either the or the parameters.
Increasing enhances burst tolerance at the cost of network
and encoding overhead, potentially worsening the packet loss
experienced and reducing throughput. In contrast, increasing

trades off recovery latency for better burst tolerance without
adding overhead. As mentioned, for higher values of , the
encoder has to wait for more data packets to be transmitted
before it can send error correction packets. We assume that
the parameter is fixed to a small constant value; increasing
it adversely impacts recovery latency, yet it needs to be large
enough that different combinations can provide reason-
able levels of overhead (for example, with , setting
produces an expensive code with 100% encoding overhead).

Importantly, once the FEC encoding is parameterized with a
rate and an interleave to tolerate a certain burst length (for
example, , and to tolerate a burst of
length ), all losses occurring in bursts of size less
than or equal to are recovered with the same latency, and this
latency depends on the parameter. Ideally, we would like to
parameterize the encoding to tolerate a maximum burst length
and then have recovery latency depend on the actual burstiness
of the loss. At the same time, we would like the encoding to
have a constant rate for network provisioning and stability. Ac-
cordingly, an FEC scheme is required where latency of recovery
degrades gracefully as losses get burstier, even as the encoding
overhead stays constant.

IV. MAELSTROM DESIGN AND IMPLEMENTATION

A. Basic Mechanism

The basic operation of Maelstrom is shown in Fig. 4. At the
send-side data center, it intercepts outgoing data packets and

Fig. 4. Basic Maelstrom mechanism: Repair packets are injected into stream
transparently.

routes them to the destination data center, generating and in-
jecting FEC repair packets into the stream in their wake. A re-
pair packet consists of a “recipe” list of data packet identifiers
and FEC information generated from these packets. In the ex-
ample in Fig. 4, this information is a simple XOR. The size of
the XOR is equal to the MTU of the data center network, and to
avoid fragmentation of repair packets, we require that the MTU
of the long-haul network be set to a slightly larger value. This
requirement is easily satisfied in practice since gigabit links very
often use “Jumbo” frames of up to 9000 B [30], while LAN net-
works have standard MTUs of 1500 B.

At the receiving data center, the appliance examines incoming
repair packets and uses them to recover missing data packets.
On recovery, the data packet is injected transparently into the
stream to the receiving end-host. Recovered data packets will
typically arrive out of order at the end-host, and hence it is vital
that packets be recovered by the appliance extremely quickly to
avoid triggering mechanisms in commodity stacks that interpret
out-of-order arrival as congestion in the network.

B. Flow Control

While relaying TCP/IP data, Maelstrom has two flow control
modes: end-to-end and split. Fig. 5 illustrates these two modes.

End-to-End Mode: With end-to-end flow control, the appli-
ance treats TCP/IP packets as conventional IP packets and routes
them through without modification, allowing flow-control to
proceed between the end-hosts. Importantly, TCP/IP’s seman-
tics are not modified. When the sending end-host receives an
acknowledgment, it can assume that the receiving end-host suc-
cessfully received the message. In end-to-end mode, Maelstrom
functions as a passive device, snooping outgoing and incoming
traffic at the data center’s edge. Its failure does not disrupt the
flow of packets between the two data centers.
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Fig. 5. Flow control options in Maelstrom. (a) End-to-end flow control.
(b) Split flow control.

Split Mode: In split mode, the send-side appliance acts as
a TCP/IP endpoint, terminating connections and sending back
ACKs immediately before relaying data on appliance-to-appli-
ance flows. Split mode is extremely useful when end-hosts have
limited buffering capacity since it allows the receive-side appli-
ance to buffer incoming data over the high-speed long-distance
link. It also mitigates TCP/IP’s slow-start effects for short-lived
flows. In split mode, Maelstrom has to operate as an active de-
vice inserted into the critical communication path. Its failure dis-
connects the communication path between the two data centers.

Is Maelstrom TCP-Friendly?: While Maelstrom respects
end-to-end flow control connections (or splits them and im-
plements its own proxy-to-proxy flow control as described
above), it is not designed for routinely congested networks.
The addition of FEC under TCP/IP flow control allows it to
steal bandwidth from other competing flows running without
FEC in the link, though maintaining fairness versus similarly
FEC-enhanced flows [31]. However, friendliness with conven-
tional TCP/IP flows is not a primary protocol design goal on
overprovisioned multigigabit links, which are often dedicated
to specific high-value applications. We see evidence for this
assertion in the routine use of parallel flows [32] and UDP
“blast” protocols [33], [34] both in commercial deployments
and by researchers seeking to transfer large amounts of data
over high-capacity academic networks.

C. Layered Interleaving

In layered interleaving, an FEC protocol with rate is
produced by running multiple instances of an FEC pro-
tocol simultaneously with increasing interleave indices

. For example, if , and
, three instances of an (8,1) protocol are

executed. The first instance with interleave , the second
with interleave , and the third with interleave .
An FEC encoding is simply an XOR of the data packets.
Hence, in layered interleaving, each data packet is included in
XORs, each of which is generated at different interleaves from
the original data stream. Choosing interleaves appropriately (as
we shall describe shortly) ensures that the XORs containing
a data packet do not have any other data packet in common.
The resulting protocol effectively has a rate of , with each
XOR generated from data packets and each data packet in-
cluded in XORs. Fig. 6 illustrates layered interleaving for an

encoding with .

As mentioned previously, standard FEC schemes can be
made resistant to a certain loss burst length at the cost of in-
creased recovery latency for all lost packets, including smaller
bursts and singleton drops. In contrast, layered interleaving pro-
vides graceful degradation in the face of bursty loss for constant
encoding overhead. Singleton random losses are recovered as
quickly as possible by XORs generated with an interleave of
1, and each successive layer of XORs generated at a higher
interleave catches larger bursts missed by the previous layer.

The implementation of this algorithm is simple and shown in
Fig. 7. At the send-side proxy, a set of repair bins is maintained
for each layer, with bins for a layer with interleave . A repair
bin consists of a partially constructed repair packet: an XOR and
the “recipe” list of identifiers of data packets that compose the
XOR. Each intercepted data packet is added to each layer, where
adding to a layer simply means choosing a repair bin from the
layer’s set, incrementally updating the XOR with the new data
packet, and adding the data packet’s header to the recipe list. A
counter is incremented as each data packet arrives at the appli-
ance, and choosing the repair bin from the layer’s set is done
by taking the modulo of the counter with the number of bins in
each layer. For a layer with interleave 10, the th intercepted
packet is added to the th bin. When a repair bin fills
up—its recipe list contains data packets—it “fires”: Arepair
packet is generated, consisting of the XOR and the recipe list,
and is scheduled for sending, while the repair bin is reinitialized
with an empty recipe list and blank XOR.

At the receive-side proxy, incoming repair packets are pro-
cessed as follows. If all the data packets contained in the repair’s
recipe list have been received successfully, the repair packet is
discarded. If the repair’s recipe list contains a single missing
data packet, recovery can occur immediately by combining the
XOR in the repair with the other successfully received data
packets. If the repair contains multiple missing data packets, it
cannot be used immediately for recovery; it is instead stored in
a table that maps missing data packets to repair packets. When-
ever a data packet is subsequently received or recovered, this
table is checked to see if any XORs now have singleton losses
due to the presence of the new packet and can be used for re-
covering other missing packets.

Importantly, XORs received from different layers interact to
recover missing data packets since an XOR received at a higher
interleave can recover a packet that makes an earlier XOR at a
lower interleave usable. Hence, though layered interleaving is
equivalent to different instances in terms of overhead
and design, its recovery power is much higher and comes close
to standard algorithms.

D. Optimizations

Staggered Start for Rate-Limiting: In the naive implemen-
tation of the layered interleaving algorithm, repair packets are
transmitted as soon as repair bins fill and allow them to be con-
structed. Also, all the repair bins in a layer fill in quick succes-
sion. In Fig. 7, the arrival of packets 36–39 will successively
fill the four repair bins in layer 2. This behavior leads to a large
number of repair packets being generated and sent within a short
period of time, which results in undesirable overhead and traffic
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Fig. 6. Layered Interleaving: �� � �� � � ��� � � ��� ��� ����.

Fig. 7. Layered interleaving implementation: �� � �� � � ��� � � ����� 	�.

spikes. Ideally, we would like to rate-limit transmissions of re-
pair packets to one for every data packets.

This problem is fixed by “staggering” the starting sizes of the
bins, analogous to the starting positions of runners in a sprint.
The very first time bin number in a layer of interleave fires,
it does so at size . For example, in Fig. 7, the first repair
bin in the second layer with interleave 4 would fire at size 1, the
second would fire at size 2, and so on. Hence, for the first data
packets added to a layer with interleave , exactly fire imme-
diately with just one packet in them. For the next data packets
added, exactly fire immediately with two data packets in
them, and so on until data packets have been added to
the layer and all bins have fired exactly once. Subsequently, all
bins fire at size . However, now that they have been staggered
at the start, only fire for any data packets. The outlined
scheme works when is greater than or equal to , as is usu-
ally the case. If is smaller than , the bin with index fires at

. Hence, for and , the initial firing
sizes would be 2 for the first bin and 4 for the second bin. If
and are not integral multiples of each other, the rate-limiting
still works, but is slightly less effective due to rounding errors.

Delaying XORs: In the straightforward implementation, re-
pair packets are transmitted as soon as they are generated. This
results in the repair packet leaving immediately after the last
data packet that was added to it, which lowers burst tolerance.
If the repair packet was generated at interleave , the resulting

protocol can tolerate a burst of lost data packets excluding the
repair, but the burst could swallow both the repair and the last
data packet in it as they are not separated by the requisite in-
terleave. The solution to this is simple: Delay sending the repair
packet generated by a repair bin until the next time a data packet
is added to the now empty bin, which happens packets later and
introduces the required interleave between the repair packet and
the last data packet included in it.

Notice that although transmitting the XOR immediately re-
sults in faster recovery, doing so also reduces the probability of a
lost packet being recovered. This tradeoff results in a minor con-
trol knob permitting us to balance speed against burst tolerance.
Our default configuration is to transmit the XOR immediately.

E. Back-of-the-Envelope Analysis

To start with, we note that no two repair packets generated at
different interleaves and (such that ) will have more
than one data packet in common as long as the least common
multiple (LCM) of the interleaves is greater than or equal to

. Pairings of repair bins in two different layers with inter-
leaves and occur every packets. Thus, a good
rule of thumb is to select interleaves that are relatively prime to
maximize their LCM and also ensure that the larger interleave
is greater than .

Let us assume that packets are dropped with uniform, inde-
pendent probability . Given a lost data packet, what is the prob-
ability that we can recover it? We can recover a data packet if at
least one of the XORs containing it is received correctly and
“usable,” i.e., all the other data packets in it have also been re-
ceived correctly, the probability of which is simply .
The probability of a received XOR being unusable is the com-
plement: .

Consequently, the probability of a sent XOR being dropped
or unusable is the sum of the probability that it was dropped and
the probability that it was received and unusable:

.
Since it is easy to ensure that no two XORs share more than

one data packet, the usability probabilities of different XORs are
independent. The probability of all the XORs being dropped
or unusable is . Hence, the probability of correctly receiving
at least one usable XOR is . Consequently, the probability
of recovering the lost data packet is , which expands to

.
This closed-form formula only gives us a lower bound on the

recovery probability since the XOR usability formula does not
factor in the probability of the other data packets in the XOR
being dropped and recovered.

Now, we extend the analysis to bursty losses. If the lost data
packet was part of a loss burst of size , repair packets generated
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Fig. 8. Comparison of packet recovery probability: � � �� � � �.

at interleaves less than are dropped or useless with high prob-
ability, and we can discount them. The probability of recovering
the data packet is then , where is the number of XORs
generated at interleaves greater than . The formulas derived for
XOR usability still hold since packet losses with more than in-
tervening packets between them have independent probability.
There is only correlation within the bursts, not between bursts.

How does this compare to traditional codes such as
Reed–Solomon [35]? In Reed–Solomon, repair packets are
generated and sent for every data packets, and the correct de-
livery of any of the packets transmitted is sufficient to
reconstruct the original data packets. Hence, given a lost data
packet, we can recover it if at least packets are received cor-
rectly in the encoding set of data and repair packets to
which the lost packet belongs. Thus, the probability of recov-
ering a lost packet is equivalent to the probability of losing
or less packets from the total packets. Since the number of
other lost packets in the XOR is a random variable and has a
binomial distribution with parameters and , the prob-
ability is the summation . In
Fig. 8, we plot the recovery probability curves for layered inter-
leaving and Reed–Solomon against uniformly random loss rate,
for . Note that the curves are very close to each
other, especially in the loss range of interest between 0% and
10%.

F. Implementation Details

We initially implemented and evaluated Maelstrom as a user-
space proxy. Performance turned out to be limited by copying
and context-switching overheads, and we subsequently reimple-
mented the system as a module that runs within the Linux 2.6.20
kernel. At an encoding rate of (8, 3), the experimental prototype
of the kernel version reaches output speeds close to 1 Gb per
second of combined data and FEC traffic, limited only by the
capacity of the outbound network card.

Of course, lambda networks are already reaching speeds of
40–100 Gb, and higher speeds are a certainty down the road.
To handle multigigabit loads, we envision Maelstrom as a small
rack-style cluster of servers, each acting as an individual proxy.
Traffic would be distributed over such a rack by partitioning
the address space of the remote data center and routing dif-
ferent segments of the space through distinct Maelstrom ap-
pliance pairs. In future work, we plan to experiment with such

configurations, which would also permit us to explore fault-tol-
erance issues (if a Maelstrom blade fails, for example), and to
support load-balancing schemes that might vary the IP address
space partitioning dynamically to spread the encoding load over
multiple machines. For this paper, however, we present the im-
plementation and performance of a single-machine appliance.

The kernel implementation is a module for Linux 2.6.20 with
hooks into the kernel packet filter [36]. Maelstrom proxies work
in pairs, one on each side of the long-haul link. Each proxy acts
both as an ingress and egress router at the same time since they
handle duplex traffic in the following manner.

• The egress router captures IP packets and creates redun-
dant FEC packets. The original IP packets are routed
through unaltered as they would have been originally.
The redundant packets are then forwarded to the remote
ingress router via a UDP channel.

• The ingress router captures and stores IP packets coming
from the direction of the egress router. Upon receipt of a
redundant packet, an IP packet is recovered if there is an
opportunity to do so. Redundant packets that can be used
at a later time are stored. If the redundant packet is useless,
it is immediately discarded. Upon recovery, the IP packet
is sent through a raw socket to its intended destination.

Using FEC requires that each data packet have a unique
identifier that the receiver can use to keep track of received
data packets and to identify missing data packets in a repair
packet. If we had access to end-host stacks, we could have
added a header to each packet with a unique sequence number.
However, we intercept traffic transparently and need to route
it without modification or addition for performance reasons.
Consequently, we identify IP packets by a tuple consisting of
the source and destination IP address, IP identification field,
size of the IP header plus data, and a checksum over the IP data
payload. The checksum over the payload is necessary since
the IP identification field is only 16 b long, and a single pair
of end-hosts communicating at high speeds will use the same
identifier for different data packets within a fairly short interval
unless the checksum is added to differentiate between them.
Note that nonunique identifiers result in garbled recovery by
Maelstrom, an event that will be caught by higher-level check-
sums designed to deal with transmission errors on commodity
networks and hence does not have significant consequences
unless it occurs frequently.

The kernel version of Maelstrom can generate up to a gigabit
per second of data and FEC traffic, with the input data rate de-
pending on the encoding rate. In our experiments, we were able
to saturate the outgoing card at rates as high as (8, 4), with CPU
overload occurring at (8, 5), where each incoming data packet
had to be XORed five times.

G. Buffering Requirements

At the receive-side proxy, incoming data packets are buffered
so that they can be used in conjunction with XORs to recover
missing data packets. Also, any received XOR that is missing
more than one data packet is stored temporarily, in case all
but one of the missing packets are received later or recovered
through other XORs, allowing the recovery of the remaining
missing packet from this XOR.
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Fig. 9. User-space throughput against (a) loss rate and (b) one-way latency.

Fig. 10. Kernel throughput against (a) loss rate and (b) one-way latency.

At the send-side, the Maelstrom appliance requires very little
memory in end-to-end flow control mode. The repair bins in
the layered interleaving scheme store incrementally computed
XORs and lists of data packet headers without the data packet
payloads, resulting in low storage overheads for each layer that
rise linearly with the value of the interleave. The memory foot-
print for a long-running proxy in end-to-end mode was around
10 MB in our experiments. In split flow-control mode, the Mael-
strom appliance needs at least as much memory as the band-
width-delay product of the long-distance link in order to saturate
it. For a 10-Gb/s link with 100 ms RTT, this amounts to 125 MB.

V. EVALUATION

We evaluated Maelstrom on the Emulab test bed at Utah [17].
For all the experiments, we used a “dumbbell” topology of two
clusters of nodes connected via routing nodes with a high-la-
tency link in between them, designed to emulate the setup in
Fig. 1, and ran the proxy code on the routers. Figs. 10–13 show
the performance of the kernel version at gigabit speeds; the re-
mainder of the graphs show the performance of the user-space
version at slower speeds. All the experiments are done with
Maelstrom using end-to-end flow control (see Fig. 5), except for
Figs. 11 and 12, which illustrate the performance of split-mode
flow control.

A. Throughput Metrics

Figs. 9 and 10 show that commodity TCP/IP throughput col-
lapses in the presence of noncongestion loss, and that Mael-
strom successfully masks loss and prevents this collapse from

occurring. Fig. 9 shows the performance of the user-space ver-
sion on a 100-Mb/s link, and Fig. 10 shows the kernel ver-
sion on a 1-Gb/s link. The experiment in each case involves
running iperf [37] flows from one node to another across the
long-distance link with and without intermediary Maelstrom
proxies and measuring obtained throughput while varying loss
rate [Figs. 9(a) and 10(a)] and one-way link latency [Figs. 9(b)
and 10(b)]. The error bars on the graphs to the left are standard
errors of the throughput over 10 runs. Between each run, we
flush TCP/IP’s cache of tuning parameters to allow for repeat-
able results. The clients in the experiment are running TCP/IP
Reno on Linux 2.6.20 with autotuning. The Maelstrom param-
eters used are , and .

The user-space version involved running a single 10-s iperf
flow from one node to another with and without Maelstrom run-
ning on the routers and measuring throughput while varying the
random loss rate on the link and the one-way latency. To test the
kernel version at gigabit speeds, we ran eight parallel iperf flows
from one node to another for 120 s. The curves obtained from
the two versions are almost identical. We present both to show
that the kernel version successfully scales up the performance
of the user-space version to hundreds of megabits of traffic per
second.

In Figs. 9(a) and 10(a), we show how TCP/IP performance
degrades on a 50-ms link as the loss rate is increased from
0.01% to 10%. Maelstrom masks loss up to 2% without signifi-
cant throughput degradation, with the kernel version achieving
two orders of magnitude higher throughput than conventional
TCP/IP at 1% loss.
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Fig. 11. Throughput of split-mode buffering flow control against one-way link
latency.

Fig. 12. Split versus end-to-end flow control: Split with regular buffers (Split)
approximates end-to-end with large buffers (E2E-Buf) and outperforms it with
regular buffers (E2E).

The graphs of Figs. 9(b) and 10(b) show TCP/IP throughput
declining on a link of increasing length when subjected to uni-
form loss rates of 0.1% and 1%. The top line in the graphs is
the performance of TCP/IP without loss and provides an upper
bound for performance on the link. In both user-space and kernel
versions, Maelstrom masks packet loss and tracks the lossless
line closely, lagging only when the link latency is low and TCP/
IP’s throughput is very high.

Even with zero loss, TCP/IP throughput in Fig. 10(b) declines
with link latency. This is due to the cap on throughput placed
by the buffering available at the receiving end-hosts. The pre-
ceding experiments were done with Maelstrom in end-to-end
flow control mode, where it is oblivious to TCP/IP and does not
split connections, and is consequently sensitive to the size of the
receiver buffer. Fig. 11 shows the performance of split-mode
flow control, where Maelstrom breaks a single TCP/IP con-
nection into three hops (see Fig. 5) and buffers data. As ex-
pected, split-mode flow control eliminates the requirement for
large buffers at the receiving end-hosts. Throughput is essen-
tially insensitive to one-way link latency, with a slight drop due
to buffering overhead on the Maelstrom boxes.

Fig. 12 compares split mode to end-to-end mode. The left-
most bar represents Maelstrom in end-to-end mode with man-
ually configured large buffers at end-hosts, and the second and
third bar from left are split mode and end-to-end mode, respec-

Fig. 13. Maelstrom with different TCP variants.

tively, with standard buffers at end-hosts. Split mode performs
as well with default-sized buffers as end-to-end mode performs
with large end-host buffers, and much better than end-to-end
mode with default sized buffers.

Lastly, Fig. 13 compares Maelstrom’s performance on a
50-ms link with TCP/IP variants other than Reno. These are
explicitly designed for high-speed long-distance networks,
typically using delay to replace or supplement loss as a conges-
tion signal. As shown, a loss rate of 0.1% causes throughput
collapse for all the tested variants in the absence of Maelstrom.
With Maelstrom, throughput is sustained even in the presence
of packet loss.

B. Latency Metrics

To measure the latency effects of TCP/IP and Maelstrom, we
ran a 0.1-Mb/s stream between two nodes over a 100-Mb/s link
with 50 ms one-way latency, and simultaneously ran a 10-Mb/s
flow alongside on the same link to simulate a real-time stream
combined with other intercluster traffic. Fig. 14(a) shows the
average delivery latency of 1-kB application-level packets in the
0.1-Mb/s stream as loss rates go up.

Fig. 14(b) shows the same scenario with a constant uniformly
random loss rate of 0.1% and varying one-way latency. Mael-
strom’s delivery latency is almost exactly equal to the one-way
latency on the link, whereas TCP/IP takes more than twice as
long once one-way latencies go past 100 ms.

Fig. 15 plots delivery latency against message identifier.
A key point is that we are plotting the delivery latency of all
packets, not just lost ones. The spikes in latency are triggered
by losses that lead to packets piling up both at the receiver
and the sender. TCP/IP delays correctly received packets at the
receiver while waiting for missing packets sequenced earlier
by the sender. It also delays packets at the sender when it cuts
down on the sending window size in response to the loss events.
The delays caused by these two mechanisms are illustrated in
Fig. 15, where single-packet losses cause spikes in delivery
latency that last for hundreds of packets. The Maelstrom con-
figuration used is .

C. Layered Interleaving and Bursty Loss

Thus far, we have shown how Maelstrom effectively hides
loss from TCP/IP for packets dropped with uniform ran-
domness. Now, we examine the performance of the layered
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Fig. 14. Per-packet one-way delivery latency against (a) loss rate and (b) link latency.

Fig. 15. Packet delivery latencies.

Fig. 16. Relatively prime interleaves offer better performance.

interleaving algorithm, showing how different parameteriza-
tions handle bursty loss patterns. We use a loss model where
packets are dropped in bursts of fixed length, allowing us to
study the impact of burst length on performance. The link has
a one-way latency of 50 ms and a loss rate of 0.1% (except in
Fig. 16, where it is varied), and a 10-Mb/s flow of UDP packets
is sent over it.

In Fig. 16, we show that our observation in Section IV-E is
correct for high loss rates: If the interleaves are relatively prime,
performance improves substantially when loss rates are high and
losses are bursty. The graph plots the percentage of lost packets
successfully recovered on the -axis against an -axis of loss
rates on a log scale. The Maelstrom configuration used is

with interleaves of (1,10,20) and (1,11,19).
In Fig. 17, we show the ability of layered interleaving to

provide gracefully degrading performance in the face of bursty
loss. On the top, we plot the percentage of lost packets suc-

Fig. 17. Layered interleaving recovery percentage and latency.

cessfully recovered against the length of loss bursts for two
different sets of interleaves, and in the bottom graph, we plot
the average latency at which the packets were recovered. Re-
covery latency is defined as the difference between the even-
tual delivery time of the recovered packet and the one-way la-
tency of the link (we confirmed that the Emulab link had almost
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Fig. 18. Latency histograms for (top) � � ��� ������ and (bottom) � � ���������. Burst sizes (left) 1, (middle) 20, and (right) 40.

Fig. 19. Reed–Solomon versus layered interleaving.

no jitter on correctly delivered packets, making the one-way la-
tency an accurate estimate of expected lossless delivery time).
As expected, increasing the interleaves results in much higher
recovery percentages at large burst sizes, but comes at the cost
of higher recovery latency. For example, a (1, 19, 41) set of
interleaves catches almost all packets in an extended burst of
25 packets at an average latency of around 45 ms, while re-
pairing all random singleton losses within 2–3 ms. The graphs
also show recovery latency rising gracefully with the increase
in loss burst length: The longer the burst, the longer it takes to
recover the lost packets. The Maelstrom configuration used is

with interleaves of (1, 11, 19) and (1, 19, 41).
In Fig. 18, we show histograms of recovery latencies for the

two interleave configurations under different burst lengths. The
histograms confirm the trends described above: Packet recov-
eries take longer from left to right as we increase loss burst
length, and from top to bottom as we increase the interleave
values.

Fig. 19 illustrates the difference between a traditional FEC
code and layered interleaving by plotting a 50-element moving
average of recovery latencies for both codes. The channel is
configured to lose singleton packets randomly at a loss rate of
0.1% and additionally lose long bursts of 30 packets at occa-
sional intervals. Both codes are configured with
and recover all lost packets. Reed–Solomon uses an interleave
of 20, and layered interleaving uses interleaves of (1, 40).
Consequently, both have a maximum tolerable burst length

of 40 packets. We use a publicly available implementation
of a Reed–Solomon code based on Vandermonde matrices,
described in [11]. The code is plugged into Maelstrom instead
of layered interleaving, showing that we can use new encodings
within the same framework seamlessly. The Reed–Solomon
code recovers all lost packets with roughly the same latency,
whereas layered interleaving recovers singleton losses almost
immediately and exhibits latency spikes whenever the longer
loss burst occurs.

D. National LambdaRail Rings

The experiments presented thus far were measured on
the Maelstrom implementation running over an emulated
high-bandwidth long-haul link within the Emulab test bed at
Utah [17]. To test Maelstrom on a real multigigabit optical link,
we ran Maelstrom over a series of 10-Gb/s National Lamb-
daRail rings originating at Cornell University, Ithaca, NY.
These rings are created on the nationwide LambdaRail network
by modifying routing tables on the National LambdaRail with
entries that force packets along loops of fixed lengths. The
longest of the rings loops out from Ithaca to the West Coast and
back again.

We placed a Maelstrom box each at the ingress and egress
points of Cornell’s LambdaRail connection and streamed data
through the routing rings between clients located behind each
box. We were able to send at data rates of up to 2 Gb/s on this
setup before the solitary Maelstrom instance at the ingress point
began to overload. Without Maelstrom, the same hardware (used
purely as a router) achieved a peak data rate of 3.1 Gb/s, so
the Maelstrom protocols are roughly 2/3 as fast. The Maelstrom
protocols were run with and , hence FEC overhead
was roughly 27%. It follows that the main overhead of Mael-
strom is the intrinsic network overhead of the FEC packets.

VI. RELATED WORK

Maelstrom is essentially a performance-enhancing proxy [14]
that uses FEC for efficient communication over long-distance
links. As such, it lies in the intersection of two research areas
that have seen major innovations in the last decade: high-speed
long-haul communication and FEC.
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TCP/IP variants such as Compound TCP [38] and
CUBIC [39] use transmission delay to detect backed-up
routers, replacing or supplementing packet loss as a signal of
congestion. While such protocols solve the congestion collapse
experienced by conventional TCP/IP on high-speed long-haul
networks, they cannot mitigate the longer packet delivery
latencies caused by packet loss, and they do not eliminate the
need for larger buffers at end-hosts. Other work has focused on
providing senders with explicit notification of corruption [27],
allowing them to differentiate it from congestion loss.

FEC has seen major innovations in the last 15 years. Packet-
level FEC was first described for high-speed WAN networks as
early as 1990 [40]. Subsequently, it was applied by researchers
in the context of ATM networks [41]. Interest in packet-level
FEC for IP networks was revived in 1996 [12] in the context of
both reliable multicast and long-distance communication. Rizzo
subsequently provided a working implementation of a software
packet-level FEC engine [11]. As a packet-level FEC proxy,
Maelstrom represents a natural evolution of these ideas.

The emphasis on applying error-correcting codes at higher
levels of the software stack has been accompanied by advances
in the codes themselves. Prior to the mid-1990s, the standard
encoding used was Reed–Solomon, an erasure code that per-
forms excellently at small scale, but does not scale to large sets
of data and error correcting symbols. This scalability barrier re-
sulted in the development of new variants of low density parity
check (LPDC) codes [42] such as Tornado [43], LT [44], and
Raptor [45] codes, which are orders of magnitude faster than
Reed–Solomon and much more scalable in input size, but re-
quire slightly more data to be received at the decoder.

While the layered interleaving code used by Maelstrom is
similar to the Tornado, LT and Raptor codes in its use of simple
XOR operations, it differs from them in one very important as-
pect: It seeks to minimize the latency between the arrival of a
packet at the send-side proxy and its successful reception at the
receive-side proxy. In contrast, codes such as Tornado encode
over a fixed set of input symbols, without treating symbols dif-
ferently based on their sequence in the data stream. In addition,
as mentioned in Section IV-C, layered interleaving is unique in
allowing the recovery latency of lost packets to depend on the
actual burst size experienced, as opposed to the maximum tol-
erable burst size as with other encoding schemes. Finally, codes
such as Tornado, LT, and Raptor do not work well with small se-
quences of packets, requiring hundreds or thousands of packets
to achieve near-linear efficiency.

VII. CONCLUSION

Modern distributed systems are compelled by real-world im-
peratives to coordinate across data centers separated by thou-
sands of miles. Packet loss cripples the performance of such
systems, and reliability and flow-control protocols designed for
LANs and/or the commodity Internet fail to achieve optimal
performance on the high-speed long-haul “lambda” networks
linking data centers. Deploying new protocols is not an option
for commodity clusters where standardization is critical for cost
mitigation. Maelstrom is an edge appliance that uses forward
error correction to mask packet loss from end-to-end protocols,

improving TCP/IP throughput and latency by orders of magni-
tude when loss occurs. Maelstrom is easy to install and deploy
and is completely transparent to applications and protocols—lit-
erally providing reliability in an inexpensive box.
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