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Abstract

Disk contention is a fact of life in modern data centers,
with multiple applications sharing the storage resources
of a single physical machine. Log-structured storage de-
signs are ideally suited for such high-contention settings,
but historically have suffered from performance prob-
lems due to cleaning overheads. In this paper, we in-
troduce Gecko, a novel design for storage arrays where a
single log structure is distributed across a chain of drives,
physically separating the tail of the log (where writes oc-
cur) from its body'. This design provides the benefits of
logging — fast, sequential writes for any number of con-
tending applications — while eliminating the disruptive
effect of log cleaning activity on application I/O.

1 Introduction
Modern data centers are heavily virtualized, with the
compute and storage resources of each physical server
multiplexed over a large number of applications. Two
trends point towards increased virtualization. The first
is the emergence of cloud computing, where cloud
providers routinely assign different cores on a single ma-
chine to different tenants. The second trend is the in-
creasing number of cores on individual machines, driven
by the end of frequency scaling, which forces applica-
tions to co-exist on a single physical machine.
Unfortunately, virtualization leads to contention. In
virtualized settings, applications are susceptible to the
behavior of other applications executing on the same ma-
chine, network and storage infrastructure. In particu-
lar, contention in the storage subsystem of a single ma-
chine is a significant issue, especially when a disk array
is shared by multiple applications running on different
cores. In such a setting, an application designed for high
I/O performance — for example, one that always writes
or reads sequentially to disk — can perform poorly due to
random I/O introduced by applications running on other
cores [2]. In fact, even in the case where every appli-
cation on the physical machine accesses storage strictly
sequentially, the disk array can still see a non-sequential
I/0 workload due to the inter-mixing of multiple sequen-
tial streams. Disk contention of this nature is endemic to

Geckos are known to drop their tails in stressful situations and run
very fast, much like our system.
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Figure 1: Chained logging: all writes go to the tail drive,
while reads take place mostly from the body of the chain
or a cache. Mirrors in the body can be powered down.

any system design where a single disk array is shared by
multiple applications running on different cores.

One solution to minimize interference involves care-
ful placement of applications on machines [2]. How-
ever, this requires the cloud provider to accurately pre-
dict the future I/O patterns of applications. Additionally,
placement decisions are usually driven by a wide num-
ber of considerations, not just disk I/O patterns; these
include data/network locality, bandwidth and CPU us-
age, migration costs, security, etc. A second solution in-
volves scheduling I/O to maintain the sequentiality of the
workload seen by the disk array. Typically, this involves
delaying the I/O of other applications while a particu-
lar application is accessing the disk array. However, /O
scheduling sacrifices access latency for better through-
put, which may not be acceptable for many applications.

Log-structured designs for storage can alleviate con-
tention in such settings. For instance, a log-structured
filesystem (LFS) [6] can support sequential or random
write streams from multiple applications at the full se-
quential speed of the underlying disk array. Unfortu-
nately, the Achilles’ Heel of LFS is cleaning or garbage
collection (GC) [7, 4]; specifically, the random reads in-
troduced by GC to move data from the body of the log to
its tail often interfere with first-class writes by the appli-
cation, negating any improvement in write throughput.

In this paper, we propose Gecko, a new log-structured
design for disk arrays. The key idea in Gecko is chained
logging, in which the tail of the log — where writes occur



— is separated from its body by placing it on a different
drive. In other words, the log is formed by concatenating
or chaining multiple drives. Figure 1 shows a chain of
three drives, Dy, Dy and D2. On a brand new deploy-
ment, writes will first go to Dy; once Dy fills up, the log
spills over to Dy, and then in turn to D». In this state,
new writes go to Dy, where the tail of the log is now
located, while reads go to all drives. As space on Dy
and D is freed due to overwrites on the logical address
space, compaction and garbage collection is initiated. As
a result, when D5 finally fills up, the log can switch back
to using free space on Dy and D;. Note that any number
of drives can be chained in this fashion. Also, each link
in the chain can be a mirrored pair of drives (e.g., Do and
Dé) for fault-tolerance and better read performance, or
even striped (e.g. five Gecko chains can constitute stripe
groups for RAID-0, 5, or 6 configuration.).

Chained logging offers a trade-off: it reduces the max-
imum, contention-free write throughput of a disk array,
and instead offers stable, predictable write performance
in the face of contention. Since only a subset of the drives
in the array (specifically, those constituting the tail of the
log) receive writes at any given time, the contention-free
throughput of the array is less than in comparable designs
such as RAID-0. However, chained logging eliminates
performance degradation due to write-write contention
between applications; all writes occur sequentially at the
drives constituting the tail of the log. Critically, chained
logging can ensure that GC activity minimally impacts
application throughput; GC reads always go to the body
of the log, which exists on a different subset of drives
from the tail, and GC writes either sequentially go to the
body or to the tail depending on the GC strategy.

To tackle read-write contention, in which reads from
one application can contend with writes from some other
application, Gecko leverages the unique structure of the
logging chain. On its own, chained logging ensures that
only a fraction of reads in the system can interfere with
write throughput; namely, only reads that access the tail
drive. For these reads, Gecko places a flash-based cache
in front of the disk array and preferentially caches data
from the tail drive of the chain. Our preliminary investi-
gations suggest that a 34 gigabyte cache can absorb over
86% of reads from mixes of real workloads to tail drives
(See Section 4). Further, Gecko uses a cache to han-
dle read-read contention between applications; we use a
multi-level-cell (MLC) flash-based read cache, because
it is cheap with sufficient capacity, but can handle (ran-
dom) reads efficiently.

When composed into larger arrays with mirroring or
striping, chained logging provides other benefits. Since
disks in the body of the log chain do not receive any
first-class writes, their mirrors can be switched off to
save power. This lowers the read throughput of the log,

but does not compromise fault tolerance. Alternatively,
Gecko can keep a mirror powered on and serve first-class
reads from it while the other mirror is being cleaned for
garbage collection. As a result, at any given point, at
least one mirror is satisfying reads without interference
from cleaning activity.

2 Disk Contention in the Data Center

Our focus is on settings where multiple applications
share a common disk infrastructure on a single phys-
ical machine. A common example of such a setting
is a virtualized environment where multiple virtual ma-
chines (VMs) execute on a single machine and operate
on filesystems that are stored on virtual disks. The guest
OS within each VM maintains disk scheduling policies
and processes I/O independently as if it resides on its
own physical disk. In reality, virtual disks are logical
volumes or files in a host filesystem. While performance
isolation across VMs can be achieved by storing each vir-
tual disk in a separate disk or disk array, this defeats the
goal of virtualization to achieve efficient multiplexing of
resources. Accordingly, it is often the case that different
virtual disks reside on the same set of physical disks.

Disk virtualization leads to disk contention. A single
badly behaved application that continually issues random
I/O to the disk can disrupt the throughput of every other
application running on a machine [2]. As machines come
packed with increasing numbers of cores — and as cloud
providers cram more tenants on a single physical box
— it becomes more likely that some application is issu-
ing random I/O at any given time, disrupting the overall
throughput of the entire system. In fact, throughput in
such settings is likely to be low even if every application
on the system is perfectly sequential in its I/O behavior,
since the physical disk array sees a mix of multiple se-
quential streams that is unlikely to stay sequential [3].

To illustrate these problems, we ran a set of simple ex-
periments on an 8-core machine with 4 disks configured
as a RAID-0 array. In the experiments, we ran multi-
ple writers concurrently on different cores to observe the
resulting impact on throughput. To make sure that the
results were not specific to virtual machines, we ran the
experiments with different levels of layering: processes
writing to a raw volume (RAW Disk), processes writ-
ing to a filesystem (EXT4 FS), processes within differ-
ent VMs writing to a raw volume (VM + RAW disk),
and processes within different VMs writing to a filesys-
tem (VM + EXT4 FS).

Figure 2 (Left) shows measurements of system
throughput with increasing numbers of sequential writ-
ers and no random writers. For all levels of layering, as
we increase the number of sequential writers, aggregate
throughput drops substantially (by more than 50% in the
case of VMs writing to a filesystem) but does not col-
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Figure 2: Throughput of 4-disk RAID-0 storage under N sequential or N

sequential + 1 random writers.

lapse. As might be expected, more layering results in
lower throughput across the board. The sequential writes
in this experiment are 256KB each.

Figure 2 (Right) shows the result of a similar exper-
iment; this time, we introduce a single random writer
issuing 4KB writes. For any number of sequential writ-
ers and any degree of layering, throughput collapses by
more than an order of magnitude when the random writer
is introduced. Notice the difference in scale for the left
and right figures. Interestingly, added layering improves
throughput in the presence of a random writer; we sur-
mise that this is due to scheduling intelligence in these
layers that delays random I/O to improve sequentiality.

3 The Return of LFS and Limitations

Log-structured filesystems were introduced in the mid-
90s on the key assumption that cheap RAM would make
it easy to cache hot data, resulting in write-dominated
workloads. Today, a similar argument can be made
in the context of flash. Flash drives are now inexpen-
sive enough to provide relatively large read caches for
disk arrays that can filter out a large fraction of reads.
There’s still uncertainty over the future role of flash as a
disk replacement [1], with flash manufacturers walking
a tightrope between reliability and density (and conse-
quently, cost). However, MLC flash enables fast, large
and long-lasting read caches; since data in the cache
is not expected to be durable, the reduced reliability of
MLC flash over time is not a barrier to deployment.
MLC-based flash drives are already seeing widespread
deployment within data centers in caching roles. As are-
sult, we expect data center disk workloads to be increas-
ingly write-dominated and for LFS to make a comeback.
The other important assumption of LFS — that media
supports fast sequential I/O and slow random I/O — con-
tinues to hold nearly two decades later. As drives have
become larger, modern systems are increasingly starved
for I/Os per second (IOPS); a 1 TB drive typically offers
a few hundred IOPS in random write mode, placing an
immense reservoir of storage behind a tiny funnel.
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Figure 3: LFS throughput for a 2-
disk RAID-0 array collapses when
GC kicks in at around the 30s mark.

As we suggest in this paper (and others have noted
before [3]), log-structured designs are ideal for reduc-
ing disk contention in virtualized settings. However, the
main criticism of LEFS in the context of disk-based sys-
tems concerns the overhead of cleaning the log [7, 4, 8].
Unless the size of the log is significantly greater than the
supported address space, log-structured storage systems
can experience severe interference between reads issued
to the body of the log for GC and first-class application
writes issued to the tail of the log. Our experimental re-
sult in Figure 3 shows how severely GC can affect the ap-
plication throughput in LFS with a 2-disk RAID-0 setup.
We pre-filled the disks, used a 4KB random write work-
load, and triggered GC 30 seconds into the experiment.
An aggregate throughput of over 200 MB/s suddenly col-
lapses to 10 MB/s when GC is invoked.

4 Gecko Design
At the heart of Gecko is the idea of chained logging,
in which a single logical log structure is chained across
multiple drives such that the tail of the log and its body
are on different drives. As the body of the log be-
comes increasingly fragmented with free space due to
overwrites on the supported address space, cleaning it
involves reading the occupied fragments from the body
of the log and re-appending them. Chained logging en-
sures that this activity does not significantly disrupt the
write bandwidth of the log; the reads issued while clean-
ing occur away from the tail and hence do not interfere
at all with application writes, while the writes issued by
cleaning are perfectly sequential and occupy a fraction or
none of the total write bandwidth without disrupting the
sequentiality of the write workload seen by the array.
We first discuss the simplest instantiation of chained
logging, and then progressively describe more sophis-
ticated versions. To support a virtualized environment,
Gecko should be implemented below the guest VM layer.
For portability, Gecko implements a block device expos-
ing a linear address space to the host OS (e.g. OS hosting
KVM) or the hypervisor (e.g. domO of Xen). To imple-
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Figure 4: Gecko metadata: a linear logical-to-physical
map is in memory and the inverse map is stored in flash
for persistence.

ment a chained log, Gecko maintains a metadata struc-
ture mapping logical sectors on the linear address space
to physical sectors on a chain of disks. It also maintains
two counters — one for the tail of the log and one for
the head. In addition, it maintains an inverse map to find
the logical sector that a physical location stores; a special
value is used to indicate that the location is empty. Note
that the total amount of the metadata required is not ex-
cessively high; with 4KB sectors, an 8 TB array requires
only around 8 GB of metadata for both the primary and
the inverse map, which can fit comfortably on a small
flash drive.

In the simplest case, garbage collection of the log is
performed in strict log order; i.e., a cleaning process
examines the next entry at the head of the log, checks
whether the logical-to-physical map and the inverse map
point to each other to test validity of the entry, and ei-
ther discards it or re-appends it to the tail of the log, up-
dating one or both counters in the process. The inverse
map is updated to the special value after garbage col-
lection. When applications issue writes over the linear
address space, the new data goes to the tail of the log and
the metadata is updated: the logical-to-physical map now
points the modified logical sectors to the new entries in
the physical log, the inverse map is updated accordingly,
and the tail counter moves forward.

Gecko metadata needs to be persisted for recovery
from power failures; for this Gecko uses flash. Rather
than logical-to-physical map, which has little update lo-
cality and can shorten the flash lifetime, Gecko stores
the inverse map (Figure 4). Gecko keeps a small frac-
tion of the inverse map of the tail drive in memory and
flushes 4KB pages, which store 1024 4-byte entries, to
the flash in strict order whenever the page becomes fully
written. On recovery from power failure, the head/tail
counters can be learned from the beginning and end of
special empty values in the inverse map (i.e. physical-to-
logical map). Then, reading the map from the tail to the
head can reconstruct the logical-to-physical map.

The simple system described thus far provides the
main benefit of log chains — logging without cleaning
interference — but suffers from other problems. It does

not offer tolerance to disk failures and restricts the write
throughput of an entire array to a single drive. While
cleaning writes do not drastically affect first-class writes,
they do occur on the same drive as application writes and
hence reduce write throughput to some extent. Further,
reads to recently written data will go to the tail disk and
disrupt the write throughput of the system. Below, we
discuss extensions to address these concerns.

Smarter Cleaning: To prevent the write activity
of cleaning from interfering with first-class application
writes, Gecko can compact data within a single drive in
order to free up spare capacity. In this case, the cleaning
process periodically compacts data in the body of the log,
moving around data on the same disk that it resides on as
opposed to moving it to the tail of the log chain. The ben-
efit of this approach is that the tail of the log chain is now
completely isolated from all cleaning activity, including
both reads and writes. However, this requires extra meta-
data to be maintained; Gecko now needs to maintain head
and tail counters for each disk and store which drive con-
tains the global head and tail in the flash for persistence.
We call this ‘compact-in-body’ GC and the simpler form
‘move-to-tail’ GC (Figure 1).

Mirroring: To provide tolerance to disk failures,
Gecko mirrors each drive in the chain. This does not re-
quire additional metadata to be maintained, since drives
are deterministically paired and synchronously updated
together. Combining mirroring with chained logging cre-
ates new opportunities. For instance, the chained log en-
sures that drives in the body of the log do not receive
first-class writes; accordingly, one of the mirrors can be
powered off if the read load does not require more than a
single drive to service it. For a mirrored chain of length
3 with six drives, two drives can be powered down at
any given point, resulting in a power savings of 33%.
Alternatively, Gecko can implement decoupled clean-
ing across mirrors, cleaning one mirror using move-to-
tail GC while servicing application reads from the other.
This prevents cleaning activity from interfering with ap-
plication reads on the body of the chain.

Striping: In a Gecko chain, the write throughput of
an array is limited by a single drive (or pair of mir-
rored drives). In essence, the argument is that an un-
contended single drive offers superior throughput com-
pared to contention-prone access to an array of drives
(configured in RAID-0, for instance). Beyond a cer-
tain array size / chain length, the contended random
write throughput of a full array may exceed the sequen-
tial write throughput of a single drive, at which point
chained logging ceases to be the better option. As a re-
sult, chained logging does not scale on its own to large
arrays of tens of drives. To scale to larger arrays, data
can be striped across multiple Gecko chains using RAID
(striping) configurations (e.g. RAID 0, 5, and 6).
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Figure 5: Gecko in-kernel: on a workload of 4KB ran-
dom writes, a log chain of length 2 achieves 120 MB/s.
When move-to-tail GC kicks in about 30s into the exper-
iment, the aggregate throughput is undisturbed.
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Figure 6: Gecko emulator: with compact-in-body GC,
a log chain of length 2 achieves 120 MB/s application
throughput on random writes regardless of GC activity.

Caching: Gecko preferentially caches data on its tail
drives to prevent application reads from contending with
write throughput. To validate the practicality of this ap-
proach, we examined mixes of 8§ enterprise server block-
level traces taken from a 2009 Microsoft study [S]. For
all cases, we found that over 86% of reads on 500GB
tail drives could be eliminated with a 34GB cache. We
believe that MLC flash can serve as effective media for
read caches; a 40 GB Intel MLC SSD that costs $80 can
cache 2.5% of a 1.6 TB address space.

5 Current Status
Gecko is currently implemented as an in-kernel block de-
vice driver that exposes a logical volume to applications.
We also have a user-space emulator that we use to rapidly
evaluate different policies before implementing them in
the in-kernel version. Our in-kernel version currently
implements simple move-to-tail cleaning, as described
above, moving data from the body to the tail of the log.
Figure 5 shows preliminary performance numbers for
our in-kernel Gecko implementation while running syn-
thetic 4KB random write workloads. The experiment is
run on a 2-drive log chain. At the starting point of the
experiment, the first drive in the chain has already been
filled and constitute the body of the chain, and new writes
go to the second drive. In the first part of the graph, a
synthetic workload generator issues random 4KB writes
to the address space and no GC activity is present; ac-

cordingly, the system maximizes the bandwidth of the
tail drive at 120 MB/s. Then, GC activity kicks in and
begins moving data from the body of the log to the tail
drive; this causes application throughput to drop to 70
MB/s, with GC writes taking up 50 MB/s. Compared to
how LFS performed in Figure 3, Gecko handles GC very
well due to GC reads taking place in the body.

In the user-space emulator, we implemented the more
sophisticated compact-in-body GC. Figure 6 shows that
application write throughput is completely unaffected by
GC activity under the same experimental setup as the in-
kernel version, since all cleaning reads and writes go to
the body of the log.

6 Conclusion

A number of factors herald a second coming for log-
structured storage designs, including the emergence of
cloud computing, the prevalence of many-core machines,
and the availability of high-capacity flash-based read
caches. However, log-structured designs are still plagued
by the cleaning-related performance issues that held back
widespread deployment in the 90s. Gecko attempts to
solve this long-standing problem by separating the tail
of the log from its body, thus isolating cleaning activity
completely from application writes.
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