
Globally Synchronized Time via Datacenter Networks

Ki Suh Lee, Han Wang, Vishal Shrivastav, Hakim Weatherspoon
Computer Science Department

Cornell University
kslee,hwang,vishal,hweather@cs.cornell.edu

ABSTRACT

Synchronized time is critical to distributed systems and
network applications in a datacenter network. Unfortu-
nately, many clock synchronization protocols in datacen-
ter networks such as NTP and PTP are fundamentally lim-
ited by the characteristics of packet switching networks.
In particular, network jitter, packet buffering and schedul-
ing in switches, and network stack overheads add non-
deterministic variances to the round trip time, which must
be accurately measured to synchronize clocks precisely.

In this paper, we present the Datacenter Time Protocol
(DTP), a clock synchronization protocol that does not use
packets at all, but is able to achieve nanosecond precision.
In essence, DTP uses the physical layer of network devices
to implement a decentralized clock synchronization proto-
col. By doing so, DTP eliminates most non-deterministic
elements in clock synchronization protocols. Further, DTP
uses control messages in the physical layer for communicat-
ing hundreds of thousands of protocol messages without in-
terfering with higher layer packets. Thus, DTP has virtually
zero overhead since it does not add load at layers 2 or higher
at all. It does require replacing network devices, which can
be done incrementally. We demonstrate that the precision
provided by DTP in hardware is bounded by 25.6 nanosec-
onds for directly connected nodes, 153.6 nanoseconds for a
datacenter with six hops, and in general, is bounded by 4TD
where D is the longest distance between any two servers in
a network in terms of number of hops and T is the period
of the fastest clock (≈ 6.4ns). Moreover, in software, a
DTP daemon can access the DTP clock with usually better
than 4T (≈ 25.6ns) precision. As a result, the end-to-end
precision can be better than 4TD + 8T nanoseconds. By
contrast, the precision of the state of the art protocol (PTP)
is not bounded: The precision is hundreds of nanoseconds
when a network is idle and can decrease to hundreds of mi-

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the owner/author(s).

SIGCOMM ’16 August 22-26, 2016, Florianopolis , Brazil

c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4193-6/16/08.

DOI: http://dx.doi.org/10.1145/2934872.2934885

croseconds when a network is heavily congested.

CCS Concepts

•Networks→ Time synchronization protocols; Data cen-

ter networks; •Hardware→ Networking hardware;

1. INTRODUCTION

Synchronized clocks are essential for many network and
distributed applications. Importantly, an order of magnitude
improvement in synchronized precision can improve perfor-
mance. For instance, if no clock differs by more than 100
nanoseconds (ns) compared to 1 microsecond (us), one-way
delay (OWD), which is an important metric for both net-
work monitoring and research, can be measured precisely
due to the tight synchronization. Synchronized clocks with
100 ns precision allow packet level scheduling of minimum
sized packets at a finer granularity, which can minimize con-
gestion in rack-scale systems [23] and in datacenter net-
works [47]. Moreover, taking a snapshot of forwarding ta-
bles in a network requires synchronized clocks [53]. In
software-defined networks (SDN), synchronized clocks with
microsecond level of precision can be used for coordinated
network updates with less packet loss [42] and for real-time
synchronous data streams [26]. In distributed systems, con-
sensus protocols like Spanner can increase throughput with
tighter synchronization precision bounds on TrueTime [22].
As the speeds of networks continue to increase, the demand
for precisely synchronized clocks at nanosecond scale is
necessary.

Synchronizing clocks with nanosecond level precision is
a difficult problem. It is challenging due to the problem of
measuring round trip times (RTT) accurately, which many
clock synchronization protocols use to compute the time
difference between a timeserver and a client. RTTs are
prone to variation due to characteristics of packet switching
networks: Network jitter, packet buffering and scheduling,
asymmetric paths, and network stack overhead. As a result,
any protocol that relies on RTTs must carefully handle mea-
surement errors.

In this paper, we present the Datacenter Time Protocol
(DTP) which provides nanosecond precision in hardware
and tens of nanosecond precision in software, and at virtu-
ally no cost to the datacenter network (i.e. no protocol mes-
sage overhead). DTP achieves better precision than other

protocols and provides strong bounds on precision: By run-
ning in the physical layer of a network stack, it eliminates
non-determinism from measuring RTTs and it introduces
zero Ethernet packets on the network. It is decentralized and
synchronizes clocks of every network device in a network
including network interfaces and switches.

In practice, in a 10 Gbps network, DTP achieves a
bounded precision of 25.6 nanoseconds between any di-
rectly connected nodes, and 153.6 nanoseconds within an
entire datacenter network with six hops at most between any

two nodes, which is the longest distance in a Fat-tree [18]
(i.e. no two nodes [clocks] will differ by more than 153.6
nanoseconds). In software, a DTP daemon can access its
DTP clock with usually better than 4T nanosecond precision
resulting in an end-to-end precision better than 4TD + 8T
nanoseconds where D is the longest distance between any
two servers in a network in terms of number of hops and T is
the period of the fastest clock (≈ 6.4ns). DTP’s approach ap-
plies to full-duplex Ethernet standards such as 1, 10, 40, 100
Gigabit Ethernet (See Sections 2.5 and 7). It does require
replacing network devices to support DTP running in the
physical layer of the network. But, it can be incrementally
deployed via DTP-enabled racks and switches. Further, in-
crementally deployed DTP-enabled racks and switches can
work together and enhance other synchronization protocols
such as Precise Time Protocol (PTP) [8] and Global Po-
sitioning System (GPS) by distributing time with bounded
nanosecond precision within a rack or set of racks without
any load on the network.

The contributions of our work are as follows:
• We present DTP that provides clock synchronization at

nanosecond resolution with bounded precision in hard-
ware and tens of nanosecond precision in software.
• We demonstrate that DTP works in practice. DTP can

synchronize all devices in a datacenter network.
• We evaluate PTP as a comparison. PTP does not pro-

vide bounded precision and is affected by configura-
tion, implementation, and network characteristics such
as load and congestion.

2. TOWARDS PRECISE CLOCK SYN-
CHRONIZATION

In this paper, we show how to improve the precision and
efficiency of clock synchronization by running a protocol in
the physical layer of the network protocol stack. In fact, two
machines physically connected by an Ethernet link are al-
ready synchronized: Synchronization is required to reliably
transmit and receive bitstreams. The question, then, is how
to use the bit-level synchronization of the physical layer to
synchronize clocks of distributed systems in a datacenter,
and how to scale the number of synchronized machines
from two to a large number of machines in a datacenter? In
this section, we state the problem of clock synchronization,
why it is hard to achieve better precision and scalability
with current approaches, and how synchronizing clocks in
the physical layer can improve upon the state-of-the-art.

2.1 Terminology

A clock c of a process p1 is a function that returns a local
clock counter given a real time t, i.e. cp(t) = local clock
counter. Note that a clock is a discrete function that returns
an integer, which we call clock counter throughout the paper.
A clock changes its counter at every clock cycle (or tick). If
clocks ci for all i are synchronized, they will satisfy

∀i, j, t |ci(t)− cj(t)| ≤ ǫ (1)

where ǫ is the level of precision to which clocks are syn-
chronized. Accuracy refers to how close clock counters are
to true time [48].

Each clock is driven by a quartz oscillator, which oscil-
lates at a given frequency. Oscillators with the same nom-
inal frequency may run at different rates due to frequency
variations caused by external factors such as temperature.
As a result, clocks that have been previously synchronized
will have clock counters that differ more and more as time
progresses. The difference between two clock counters is
called the offset, which tends to increase over time, if not
resynchronized. Therefore, the goal of clock synchroniza-
tion is to periodically adjust offsets between clocks (offset
synchronization) and/or frequencies of clocks so that they
remain close to each other [48].

If a process attempts to synchronize its clock to true time
by accessing an external clock source such as an atomic
clock, or a satellite, it is called external synchronization. If a
process attempts to synchronize with another (peer) process
with or without regard to true time, it is called internal syn-

chronization. Thus, externally synchronized clocks are also
internally synchronized, but not vice versa [24]. In many
cases, monotonically increasing and internally synchronized
clocks are sufficient. For example, measuring one-way de-
lay and processing time or ordering global events do not
need true time. As a result, in this paper, we focus on how
to achieve internal synchronization: We achieve clock syn-
chronization of all clocks in a datacenter with high precision;
however, their clock counters are not synchronized to an ex-
ternal source. We briefly discuss how to extend the protocol
to support external synchronization in Section 5.

2.2 Clock Synchronization

Regardless of whether the goal is to achieve internal or
external synchronization, the common mechanism of syn-
chronizing two clocks is similar across different algorithms
and protocols: A process reads a different process’s cur-
rent clock counter and computes an offset, adjusting its own
clock frequency or clock counter by the offset.

In more detail, a process p sends a time request message
with its current local clock counter (ta in Figure 1) to a pro-
cess q (q reads p’s clock). Then, process q responds with a
time response message with its local clock counter and p’s
original clock counter (p reads q’s clock). Next, process p
computes the offset between its local clock counter and the

1We will use the term process to denote not only a process
running on a processor but also any system entities that can
access a clock, e.g. a network interface card.

Client

Server

Userspace

Userspace

Wire

Wire

ta

tb tc

td

t'a

t'b t'c

t'd

Figure 1: Common approach to measure offset and RTT.

remote clock counter (q) and round trip time (RTT) of the
messages upon receiving the response at time td. Finally,
p adjusts its clock counter or the rate of its clock to remain
close to q’s clock.

In order to improve precision, q can respond with two
clock counters to remove the internal delay of processing the
time request message: One upon receiving the time request
(tb), and the other before sending the time response (tc). See
Figure 1. For example, in NTP, the process p computes RTT
δ and offset θ, as follows [41]:

δ = (td − ta)− (tc − tb)

θ =
(tb + tc)

2
−

(ta + td)

2

Then, p applies these values to adjust its local clock.

2.3 Problems of Clock synchronization

Precision of a clock synchronization protocol is a func-
tion of clock skew, errors in reading remote clocks, and the
interval between resynchronizations [24, 29, 33]. We dis-
cuss these factors in turn below and how they contribute to
(reduced) precision in clock synchronization protocols.

2.3.1 Problems with Oscillator skew

Many factors such as temperature and quality of an os-
cillator can affect oscillator skew. Unfortunately, we often
do not have control over these factors to the degree neces-
sary to prevent reduced precision. As a result, even though
oscillators may have been designed with the same nominal
frequency, they may actually run at slightly different rates
causing clock counters to diverge over time, requiring syn-
chronization.

2.3.2 Problems with Reading Remote Clocks

There are many opportunities where reading clocks can be
inaccurate and lead to reduced precision. In particular, read-
ing remote clocks can be broken down into multiple steps
(enumerated below) where each step can introduce random
delay errors that can affect the precision of clock synchro-
nization.

1. Preparing a time request (reply) message
2. Transmitting a time request (reply) message
3. Packet traversing time through a network
4. Receiving a time request (reply) message
5. Processing a time request (reply) message
Specifically, there are three points where precision is ad-

versely affected: (a) accuracy of timestamping affects steps
1 and 5, (b) the software network stack can introduce errors
in steps 2 and 4, and (c) network jitter can contribute errors
in step 3. We discuss each one further.

Precision errors introduced by timestamps.
First, accurate timestamping is not trivial. Before trans-

mitting a message, a process timestamps the message to em-
bed its own local counter value. Similarly, after receiving a
message, a process timestamps it for further processing (i.e.
computing RTT). Timestamping is often inaccurate in com-
modity systems [36], which is a problem. It can add random
delay errors which can prevent the nanosecond-level times-
tamping required for 10 Gigabit Ethernet (10 GbE) where
minimum sized packets (64-byte) arriving at line speed can
arrive every 68 nanoseconds. Improved timestamping with
nanosecond resolution via new NICs are becoming more ac-
cessible [13]. However, random jitter can still be introduced
due to the issues discussed below.

Precision errors introduced by network stack.
Second, transmitting and receiving messages involve a

software network stack (e.g., between ta and t′a in Figure 1).
Most clock synchronization protocols (e.g., NTP and PTP)
run in a time daemon, which periodically sends and receives
UDP packets between a remote process (or a time server).
Unfortunately, the overhead of system calls, buffering in ker-
nel and network interfaces, and direct memory access trans-
actions can all contribute to errors in delay [25, 27, 36]. To
minimize the impact of measurement errors, a daemon can
run in kernel space, or kernel bypassing can be employed.
Nonetheless, non-deterministic delay errors cannot be com-
pletely removed when a protocol involves a network stack.

Precision errors introduced by network jitter.
Third, packet propagation time can vary since it is prone

to network jitter (e.g., between t′a and t′b or between t′c and t′d
in Figure 1). Two processes are typically multiple hops away
from each other and the delay between them can vary over
time depending on network conditions and external traffic.
Further, time requests and responses can be routed through
asymmetric paths, or they may suffer different network con-
ditions even when they are routed through symmetric paths.
As a result, measured delay, which is often computed by di-
viding RTT by two, can be inaccurate.

2.3.3 Problems with Resynch Frequency

The more frequent resynchronizations, the more precise
clocks can be synchronized to each other. However, frequent
resynchronizations require increased message communica-
tion, which adds overhead to the network, especially in a
datacenter network where hundreds of thousands of servers
exist. The interval between resynchronizations can be con-
figured. It is typically configured to resynchronize over a
period of once per second [8], which will keep network over-
head low, but on the flip side, will also adversely affect pre-
cision of clock synchronization.

2.4 NTP vs. PTP vs. GPS

In this section, we compare the most popular clock syn-
chronization protocols, NTP, PTP, and GPS, in terms of the
problems of clock synchronization discussed in Section 2.3.
A summary of the comparison is in Table 1.

Precision Scalability Overhead (pckts) Extra hardware
NTP us Good Moderate None
PTP sub-us Good Moderate PTP-enabled devices
GPS ns Bad None Timing signal receivers, cables
DTP ns Good None DTP-enabled devices

Table 1: Comparison between NTP, PTP, GPS, and DTP

2.4.1 Network Time Protocol (NTP)

The most commonly used time synchronization protocol
is the Network Time Protocol (NTP) [41]. NTP provides
millisecond precision in a wide area network (WAN) and mi-
crosecond precision in a local area network (LAN). In NTP,
time servers construct a tree, and top-level servers (or stra-
tum 1) are connected to a reliable external time source (stra-
tum 0) such as satellites through a GPS receiver, or atomic
clocks. A client communicates with one of the time servers
via UDP packets. As mentioned in Section 2.1, four times-
tamps are used to account for processing time in the time
server.

NTP is not adequate for a datacenter. It is prone to errors
that reduce precision in clock synchronization: Inaccurate
timestamping, software network stack (UDP daemon), and
network jitter. Furthermore, NTP assumes symmetric paths
for time request and response messages, which is often not
true in reality. NTP attempts to reduce precision errors via
statistical approaches applied to network jitter and asymmet-
ric paths. Nonetheless, the precision in NTP is still low.

2.4.2 Precise Time Protocol (PTP)

The IEEE 1588 Precise Time Protocol (PTP) [8]2 is an
emerging time synchronization protocol that can provide
tens to hundreds of nanosecond precision in a LAN when
properly configured. PTP picks the most accurate clock in a
network to be the grandmaster via the best master clock al-
gorithm and others synchronize to it. The grandmaster could
be connected to an external clock source such as a GPS re-
ceiver or an atomic clock. Network devices including PTP-
enabled switches form a tree with the grandmaster as the
root. Then, at each level of the tree, a server or switch be-
haves as a slave to its parent and a master to its children.
When PTP is combined with Synchronous Ethernet, which
syntonizes frequency of clocks (SyncE, See Section 8), PTP
can achieve sub-nanosecond precision in a carefully con-
figured environment [39], or hundreds of nanoseconds with
tens of hops in back-haul networks [38].

The protocol normally runs as follows: The grandmas-
ter periodically sends timing information (Sync) with IP
multicast packets. Upon receiving a Sync message which
contains time t0, each client sends a Delay_Req mes-
sage to the timeserver, which replies with a Delay_Res

message. The mechanism of communicating Delay_Req
and Delay_Res messages is similar to NTP, and Figure 1.
Then, a client computes the offset and adjusts its clock or
frequency. If the timeserver is not able to accurately embed
t0 in the Sync message, it emits a Follow_Up message
with t0, after the Sync message, to everyone.

To improve the precision, PTP employs a few techniques.

2We use PTPv2 in this discussion.

First, PTP-enabled network switches can participate in the
protocol as Transparent clocks or Boundary clocks in or-
der to eliminate switching delays. Transparent clocks times-
tamp incoming and outgoing packets, and correct the time
in Sync or Follow_Up to reflect switching delay. Bound-
ary clocks are synchronized to the timeserver and work as
masters to other PTP clients, and thus provide scalability to
PTP networks. Second, PTP uses hardware timestamping
in order to eliminate the overhead of network stack. Mod-
ern PTP-enabled NICs timestamp both incoming and outgo-
ing PTP messages [13]. Third, a PTP-enabled NIC has a
PTP hardware clock (PHC) in the NIC, which is synchro-
nized to the timeserver. Then, a PTP-daemon is synchro-
nized to the PHC [21, 45] to minimize network delays and
jitter. Lastly, PTP uses smoothing and filtering algorithms to
carefully measure one way delays.

As we demonstrate in Section 6.1, the precision provided
by PTP is about few hundreds of nanoseconds at best in a
10 GbE environment, and it can change (decrease) over time
even if the network is in an idle state. Moreover, the preci-
sion could be affected by the network condition, i.e. vari-
able and/or asymmetric latency can significantly impact the
precision of PTP, even when cut-through switches with pri-
ority flow control are employed [51, 52]. Lastly, it is not
easy to scale the number of PTP clients. This is mainly
due to the fact that a timeserver can only process a limited
number of Delay_Req messages per second [8]. Bound-
ary and Transparent clocks can potentially solve this scal-
ability problem. However, precision errors from Boundary
clocks can be cascaded to low-level components of the tim-
ing hierarchy tree, and can significantly impact the precision
overall [30]. Further, it is shown that Transparent clocks
often are not able to perform well under network conges-
tion [52], although a correct implementation of Transparent
clocks should not degrade the performance under network
congestion.

2.4.3 Global Positioning System (GPS)

In order to achieve nanosecond-level precision, GPS can
be employed [4, 22]. GPS provides about 100 nanosecond
precision in practice [37]. Each server can have a dedicated
GPS receiver or can be connected to a time signal distri-
bution server through a dedicated link. As each device is
directly synchronized to satellites (or atomic clocks) or is
connected via a dedicated timing network, network jitter and
software network stack is not an issue.

Unfortunately, GPS based solutions are not realistic for an
entire datacenter. It is not cost effective and scalable because
of extra cables and GPS receivers required for time signals.
Further, GPS signals are not always available in a datacenter
as GPS antennas must be installed on a roof with a clear view
to the sky. However, GPS is often used in concert with other
protocols such as NTP and PTP and also DTP.

2.5 Datacenter Time Protocol (DTP):
Why the PHY?

Our goal is to achieve nanosecond-level precision as in
GPS, with scalability in a datacenter network, and without

Device 1 Device 2

RX PHY

TX CLK

TX PHYRX PHY

TX CLK

TX PHY

Figure 2: Clock domains of two peers. The same color rep-
resents the the same clock domain.

any network overhead. We achieve this goal by running a
decentralized protocol in the physical layer (PHY).

DTP exploits the fact that two peers3 are already synchro-
nized in the PHY in order to transmit and receive bitstreams
reliably and robustly. In particular, the receive path (RX)
of a peer physical layer recovers the clock from the phys-
ical medium signal generated by the transmit path (TX) of
the sending peer’s PHY. As a result, although there are two
physical clocks in two network devices, they are virtually
in the same circuit (Figure 2; What each rectangle means is
explained in Section 4.1).

Further, a commodity switch often uses one clock oscilla-
tor to feed the sole switching chip in a switch [2], i.e. all TX
paths of a switch use the same clock source. Given a switch
and N network devices connected to it, there are N+1 phys-
ical oscillators to synchronize, and all of them are virtually
in the same circuit.

As delay errors from network jitter and a software net-
work stack can be minimized by running the protocol in the
lowest level of a system [48], the PHY is the best place to
reduce those sources of errors. In particular, we give three
reasons why clock synchronization in the PHY addresses the
problems in Section 2.3.

First, the PHY allows accurate timestamping at sub-
nanosecond scale, which can provide enough fidelity for
nanosecond-level precision. Timestamping [27, 36] in the
PHY achieves high precision by counting the number of bits
between and within packets. Timestamping in the PHY re-
lies on the clock oscillator that generates bits in the PHY,
and, as a result, it is possible to read and embed clock coun-
ters with a deterministic number of clock cycles in the PHY.

Second, a software network stack is not involved in the
protocol. As the physical layer is the lowest layer of a net-
work protocol stack, there is always a deterministic delay
between timestamping a packet and transmitting it. In ad-
dition, it is always possible to avoid buffering in a network
device because protocol messages can always be transmitted
when there is no other packet to send.

Lastly, there is little to no variation in delay between two
peers in the PHY. The only element in the middle of two
physically communicating devices is a wire that connects
them. As a result, when there is no packet in transit, the de-
lay in the PHY measured between two physically connected
devices will be the time to transmit bits over the wire (propa-
gation delay, which is always constant with our assumptions
in Section 3.1), a few clock cycles required to process bits
in the PHY (which can be deterministic), and a clock do-
main crossing (CDC) which can add additional random de-
lay. A CDC is necessary for passing data between two clock

3two peers are two physically connected ports via a cable.

domains, namely between the TX and RX paths. Synchro-
nization FIFOs are commonly used for a CDC. In a synchro-
nization FIFO, a signal from one clock domain goes through
multiple flip-flops in order to avoid metastability from the
other clock domain. As a result, one random delay could be
added until the signal is stable to read.

Operating a clock synchronization protocol in the physi-
cal layer not only provides the benefits of zero to little de-
lay errors, but also zero overhead to a network: There is no
need for injection of packets to implement a clock synchro-
nization protocol. A network interface continuously gener-
ates either Ethernet frames or special characters (Idle char-
acters) to maintain a link connection to its peer. We can ex-
ploit those special characters in the physical layer to transmit
messages (We will discuss this in detail in Section 4). The
Ethernet standard [9] requires at least twelve idle characters
(/I/) between any two Ethernet frames regardless of link
speed to allow the receiving MAC layer to prepare for the
next packet. As a result, if we use these idle characters to
deliver protocol messages (and revert them back to idle char-
acters), no additional packets will be required. Further, we
can send protocol messages between every Ethernet frame
without degrading the bandwidth of Ethernet and for differ-
ent Ethernet speeds (See Section 7).

3. DATACENTER TIME PROTOCOL

In this section, we present the Datacenter Time Protocol
(DTP): Assumptions, protocol, and analysis. The design
goals for the protocol are the following:
• Internal synchronization with nanosecond precision.
• No network overhead: No packets are required for the

synchronization protocol.

3.1 Assumptions

We assume, in a 10 Gigabit Ethernet (10 GbE) network,
all network devices are driven by oscillators that run at
slightly different rates due to oscillator skew, but operate
within a range defined by the IEEE 802.3 standard. The stan-
dard requires that the clock frequency fp be in the range of
[f − 0.0001f, f + 0.0001f]4 where f is 156.25 MHz in 10
GbE (See Section 4.1).

We assume that there are no “two-faced” clocks [34] or
Byzantine failures which can report different clock counters
to different peers.

We further assume that the length of Ethernet cables is
bounded and, thus, network propagation delay is bounded.
The propagation delay of optic fiber is about 5 nanoseconds
per meter (2/3 × the speed of light, which is 3.3 nanosec-
onds per meter in a vacuum) [31]. In particular, we assume
the longest optic fiber inside a datacenter is 1000 meters, and
as a result the maximum propagation delay is at most 5 us.
Most cables inside a datacenter are 1 to 10 meters as they
are typically used to connect rack servers to a Top-of-Rack
(ToR) switch; 5 to 50 nanoseconds would be the more com-
mon delay.

4This is ±100 parts per million (ppm).

Algorithm 1 DTP inside a network port

STATE:
gc : global counter, from Algorithm 2
lc← 0 : local counter, increments at every clock tick
d← 0 : measured one-way delay to peer p

TRANSITION:
T0: After the link is established with p
lc← gc
Send (Init, lc)

T1: After receiving (Init, c) from p
Send (Init-Ack, c)

T2: After receiving (Init-Ack, c) from p
d← (lc− c− α)/2

T3: After a timeout
Send (Beacon, gc)

T4: After receiving (Beacon, c) from p
lc← max(lc, c+ d)

3.2 Protocol

In DTP, every network port (of a network interface or a
switch) has a local counter in the physical layer that incre-
ments at every clock tick. DTP operates via protocol mes-
sages between peer network ports: A network port sends a
DTP message timestamped with its current local counter to
its peer and adjusts its local clock upon receiving a remote

counter value from its peer. We show that given the bounded
delay and frequent resynchronizations, local counters of two
peers can be precisely synchronized in Section 3.3.

Since DTP operates and maintains local counters in the
physical layer, switches play an important role in scaling up
the number of network devices synchronized by the proto-
col. As a result, synchronizing across all the network ports
of a switch (or a network device with a multi-port network
interface) requires an extra step: DTP needs to synchronize
the local counters of all local ports. Specifically, DTP main-
tains a global counter that increments every clock tick, but
also always picks the maximum counter value between it and
all of the local counters.

DTP follows Algorithm 1 to synchronize the local coun-
ters between two peers. The protocol runs in two phases:
INIT and BEACON phases.
INIT phase The purpose of the INIT phase is to measure
the one-way delay between two peers. The phase begins
when two ports are physically connected and start communi-
cating, i.e. when the link between them is established. Each
peer measures the one-way delay by measuring the time be-
tween sending an INIT message and receiving an associ-
ated INIT-ACKmessage, i.e. measure RTT, then divide the
measured RTT by two (T0, T1, and T2 in Algorithm 1).

As the delay measurement is processed in the physical
layer, the RTT consists of a few clock cycles to send / re-
ceive the message, the propagation delays of the wire, and
the clock domain crossing (CDC) delays between the receive
and transmit paths. Given the clock frequency assumption,
and the length of the wire, the only non-deterministic part
is the CDC. We analyze how they affect the accuracy of the
measured delay in Section 3.3. Note that α in Transition 2
in Algorithm 1 is there to control the non-deterministic vari-
ance added by the CDC (See Section 3.3).

Algorithm 2 DTP inside a network device / switch

STATE:
gc: global counter
{lci}: local counters

TRANSITION:
T5: at every clock tick

gc←max(gc+ 1, {lci})

BEACON phase During the BEACON phase, two ports peri-
odically exchange their local counters for resynchronization
(T3 and T4 in Algorithm 1). Due to oscillator skew, the
offset between two local counters will increase over time.
A port adjusts its local counter by selecting the maximum
of the local and remote counters upon receiving a BEACON
message from its peer. Since BEACON messages are ex-
changed frequently, hundreds of thousands of times a sec-
ond (every few microseconds), the offset can be kept to a
minimum.
Scalability and multi hops Switches and multi-port net-
work interfaces have two to ninety-six ports in a single de-
vice that need to be synchronized within the device5. As a
result, DTP always picks the maximum of all local coun-
ters {lci} as the value for a global counter gc (T5 in Algo-
rithm 2). Then, each port transmits the global counter gc in
a BEACON message (T3 in Algorithm 1).

Choosing the maximum allows any counter to increase
monotonically at the same rate and allows DTP to scale: The
maximum counter value propagates to all network devices
via BEACON messages, and frequent BEACON messages
keep global counters closely synchronized (Section 3.3).
Network dynamics When a device is turned on, the local
and global counters of a network device are set to zero. The
global counter starts incrementing when one of the local
counters starts incrementing (i.e., a peer is connected), and
continuously increments as long as one of the local counters
is incrementing. However, the global counter is set to zero
when all ports become inactive. Thus, the local and global
counters of a newly joining device are always less than those
of other network devices in a DTP network. We use a spe-
cial BEACON_JOIN message in order to make large ad-
justments to a local counter. This message is communi-
cated after INIT_ACK message in order for peers to agree
on the maximum counter value between two local coun-
ters. When a network device with multiple ports receives
a BEACON_JOIN message from one of its ports, it adjusts
its global clock and propagates BEACON_JOIN messages
with its new global counter to other ports. Similarly, if a
network is partitioned and later restored, two subnets will
have different global counters. When the link between them
is re-established, BEACON_JOIN messages allow the two
subnets to agree on the same (maximum) clock counter.
Handling failures There are mainly two types of failures
that need to be handled appropriately: Bit errors and faulty
devices. IEEE 802.3 standard supports a Bit Error Rate
(BER) objective of 10−12 [9], which means one bit error

5Local counters of a multi-port device will not always be
the same because remote clocks run at different rates. As a
result, a multi-port device must synchronize local counters.

could happen every 100 seconds in 10 GbE. However, it is
possible that a corrupted bit coincides with a DTP message
and could result in a big difference between local and remote
counters. As a result, DTP ignores messages that contain re-
mote counters off by more than eight (See Section 3.3), or
bit errors not in the three least significant bits (LSB). Fur-
ther, in order to prevent bit errors in LSBs, each message
could include a parity bit that is computed using three LSBs.
As BEACON messages are communicated very frequently,
ignoring messages with bit errors does not affect the preci-
sion.

Similarly, if one node makes too many jumps (i.e. adjust-
ing local counters upon receiving BEACON messages) in a
short period of time, it assumes the connected peer is faulty.
Given the latency, the interval of BEACON messages, and
maximum oscillator skew between two peers, one can esti-
mate the maximum offset between two clocks and the max-
imum number of jumps. If a port receives a remote counter
outside the estimated offset too often, it considers the peer
to be faulty and stops synchronizing with the faulty device.

3.3 Analysis

As discussed in Section 2.1, the precision of clock syn-
chronization is determined by oscillator skew, interval be-
tween resynchronizations, and errors in reading remote
clocks [24, 29, 33]. In this section, we analyze DTP to un-
derstand its precision in regards to the above factors. In par-
ticular, we analyze the bounds on precision (clock offsets)
and show the following:
• Bound of two tick errors due to measuring the one-way

delay (OWD) during the INIT phase.
• Bound of two tick errors due to the BEACON interval.

The offset of two synchronized peers can be up to two
clock ticks if the interval of BEACON messages is less
than 5000 ticks.
• As a result, the offset of two peers is bound by four

clock ticks or 4T where T is 6.4ns. In 10 GbE the
offset of two peers is bound by 25.6ns.
• Multi hop precision. As each link can add up to four

tick errors, the precision is bounded by 4TD where 4
is the bound for the clock offset between directly con-
nected peers, T is the clock period and D is the longest
distance in terms of the number of hops.

For simplicity, we use two peers p and q, and use Tp (fp)
and Tq (fq) to denote the period (frequency) of p and q’s
oscillator. We assume for analysis p’s oscillator runs faster
than q’s oscillator, i.e. Tp < Tq (or fp > fq).
Two tick errors due to OWD. In DTP, the one-way de-
lay (OWD) between two peers, measured during the INIT
phase, is assumed to be stable, constant, and symmetric in
both directions. In practice, however, the delay can be mea-
sured differently depending on when it is measured due to
oscillator skew and how the synchronization FIFO between
the receive and transmit paths interact. Further, the OWD
of one path (from p to q) and that of the other (from q to p)
might not be symmetric due to the same reasons.We show
that DTP still works with very good precision despite any
errors introduced by measuring the OWD.

Suppose p sends an INIT message to q at time t, and the
delay between p and q is d clock cycles. Given the assump-
tion that the length of cables is bounded, and that oscillator
skew is bounded, the delay is d cycles for both directions.
The message arrives at q at t+ Tpd (i.e. the elapsed time is
Tpd). Since the message can arrive in the middle of a clock
cycle of q’s clock, it can wait up to Tq before q processes
it. Further, passing data from the receipt path to the trans-
mit path requires a synchronization FIFO between two clock
domains, which can add one more cycle randomly, i.e. the
message could spend an additional Tq before it is received.
Then, the INIT-ACK message from q takes Tqd time to ar-
rive at p, and it could wait up to 2Tp before p processes it. As
a result, it takes up to a total of Tpd+2Tq +Tqd+2Tp time
to receive the INIT-ACK message after sending an INIT

message. Thus, the measured OWD, dp, at p is,

dp ≤ ⌊
Tpd+ 2Tq + Tqd+ 2Tp

Tp

⌋/2 = d+ 2

In other words, dp could be one of d, d + 1, or d + 2 clock
cycles depending on when it is measured. As q’s clock is
slower than p, the clock counter of q cannot be larger than p.
However, if the measured OWD, dp, is larger than the actual
OWD, d, then p will think q is faster and adjust its offset
more frequently than necessary (See Transition T 4 in Algo-
rithm 1). This, in consequence, causes the global counter of
the network to go faster than necessary. As a result, α in T2
of Algorithm 1 is introduced.
α = 3 allows dp to always be less than d. In particular,

dp will be d − 1 or d; however, dq will be d − 2 or d − 1.
Fortunately, a measured delay of d − 2 at q does not make
the global counter go faster, but it can increase the offset
between p and q to be two clock ticks most of the time, which
will result in q adjusting its counter by one only when the
actual offset is two.
Two tick errors due to the BEACON interval. The BEACON
interval, period of resynchronization, plays a significant role
in bounding the precision. We show that a BEACON interval
of less than 5000 clock ticks can bound the clock offset to
two ticks between peers.

Let Cp(X) be a clock that returns a real time t at which
cp(t) changes to X . Note that the clock is a discrete func-
tion. Then, cp(t) = X means, the value of the clock is stably
X at least after t− Tp, i.e. t− Tp < Cp(X) ≤ t.

Suppose p and q are synchronized at time t1, i.e. cp(t1) =
cq(t1) = X . Also suppose cp(t2) = X+∆P , and cq(t2) =
X+∆Q at time t2, where ∆P is the difference between two
counter values of clock p at time t1 and t2. Then,

t2 − Tp < Cp(X +∆P) = Cp(X) + ∆PTp ≤ t2

t2 − Tq < Cq(X +∆Q) = Cq(X) + ∆QTq ≤ t2

Then, the offset between two clocks at t2 is,

∆t(fp − fq)− 2 < ∆P −∆Q < ∆t(fp − fq) + 2

where ∆t = t2 − t1.
Since the maximum frequency of a NIC clock oscillator is

1.0001f , and the minimum frequency is 0.9999f , ∆t(fp −
fq) is always smaller than 1 if ∆t is less than 32 us. As a

Media Access Control (MAC)

Reconciliation Sublayer (RS)

TX 32bit RX 32bitXGMII 156.25 MHz

Physical Coding Sublayer (PCS)

Physical Medium Attachment (PMA)

Physical Medium Dependent (PMD)

TX 16bit RX 16bitXSBI 644.53125MHz

Figure 3: Low layers of a 10 GbE network stack. Grayed
rectangles are DTP sublayers, and the circle represents a
synchronization FIFO.

result, ∆P −∆Q can be always less than or equal to 2, if the
interval of resynchronization (∆t) is less than 32 us (≈ 5000
ticks). Considering the maximum latency of the cable is less
than 5 us (≈ 800 ticks), a beacon interval less than 25 us
(≈ 4000 ticks) is sufficient for any two peers to synchronize
with 12.8 ns (= 2 ticks) precision.
Multi hop Precision. Note that DTP always picks the max-
imum clock counter of all nodes as the global counter. All
clocks will always be synchronized to the fastest clock in the
network, and the global counter always increases monoton-
ically. Then, the maximum offset between any two clocks
in a network is between the fastest and the slowest. As dis-
cussed above, any link between them can add at most two
offset errors from the measured delay and two offset er-
rors from BEACON interval. Therefore, the maximum offset
within a DTP-enabled network is bounded by 4TD where D
is the longest distance between any two nodes in a network
in terms of number of hops, and T is the period of the clock
as defined in the IEEE 802.3 standard (≈ 6.4ns).

4. IMPLEMENTATION

In this section, we briefly discuss the IEEE 802.3ae 10
Gigabit Ethernet standard before presenting how we modify
the physical layer to support DTP.

4.1 IEEE 802.3 Standard

According to the IEEE 802.3ae, the physical layer (PHY)
of 10 GbE consists of three sublayers (Figure 3): The Phys-
ical Coding Sublayer (PCS), the Physical Medium Attach-
ment (PMA), and the Physical Medium Dependent (PMD).
The PMD is responsible for transmitting the outgoing sym-
bolstream over the physical medium and receiving the in-
coming symbolstream from the medium. The PMA is re-
sponsible for clock recovery and (de-)serializing the bit-
stream. The PCS performs 64b/66b encoding / decoding.

In the PHY, there is a 66-bit Control block (/E/), which
encodes eight seven-bit idle characters (/I/). As the stan-
dard requires at least twelve /I/s in an interpacket gap, it
is guaranteed to have at least one /E/ block preceding any

Global Counter = Max(LC0, LC1, LC2, LC3)

Port 0 Port 1 Port 2 Port 3

Local

Counter

Remote

Counter

Global Counter

Figure 4: DTP enabled four-port device.

Ethernet frame6. Moreover, when there is no Ethernet frame,
there are always /E/ blocks: 10 GbE is always sending at
10 Gbps and sends /E/ blocks continuously if there are no
Ethernet frames to send.

As briefly mentioned in Section 2, the PCS of the trans-
mit path is driven by the local oscillator, and the PCS of the
receive path is driven by the recovered clock from the in-
coming bitstream. See Figure 2.

4.2 DTP-enabled PHY

The control logic of DTP in a network port consists of
Algorithm 1 from Section 3 and a local counter. The lo-
cal counter is a 106-bit integer (2 × 53 bits) that incre-
ments at every clock tick (6.4 ns = 1/156.25 MHz), or is
adjusted based on received BEACON messages. Note that
the same oscillator drives all modules in the PCS sublayer
on the transmit path and the control logic that increments
the local counter. i.e. they are in the same clock domain. As
a result, the DTP sublayer can easily insert the local clock
counter into a protocol message with no delay.

The DTP-enabled PHY is illustrated in Figure 3. Figure 3
is exactly the same as the PCS from the standard, except
that Figure 3 has DTP control, TX DTP, and RX DTP sub-
layers shaded in gray. Specifically, on the transmit path,
the TX DTP sublayer inserts protocol messages, while, on
the receive path, the RX DTP sublayer processes incoming
protocol messages and forwards them to the control logic
through a synchronization FIFO. After the RX DTP sublayer
receives and uses a DTP protocol message from the Control
block (/E/), it replaces the DTP message with idle char-
acters (/I/s, all 0’s) as required by the standard such that
higher network layers do not know about the existence of
the DTP sublayer. Lastly, when an Ethernet frame is being
processed in the PCS sublayer in general, DTP simply for-
wards blocks of the Ethernet frame unaltered between the
PCS sublayers.

4.3 DTP-enabled network device

A DTP-enabled device (Figure 4) can be implemented
with additional logic on top of the DTP-enabled ports. The
logic maintains the 106-bit global counter as shown in Al-
gorithm 2, which computes the maximum of the local coun-
ters of all ports in the device. The computation can be op-
timized with a tree-structured circuit to reduce latency, and
can be performed in a deterministic number of cycles. When

6Full-duplex Ethernet standards such as 1, 10, 40, 100 GbE
send at least twelve /I/s (at least one /E/) between every
Ethernet frame.

a switch port tries to send a BEACON message, it inserts the
global counter into the message, instead of the local counter.
Consequently, all switch ports are synchronized to the same
global counter value.

4.4 Protocol messages

DTP uses /I/s in the /E/ control block to deliver pro-
tocol messages. There are eight seven-bit /I/s in an /E/

control block, and, as a result, 56 bits total are available for
a DTP protocol message per /E/ control block. Modifying
control blocks to deliver DTP messages does not affect the
physics of a network interface since the bits are scrambled
to maintain DC balance before sending on the wire (See the
scrambler/descrambler in Figure 3). Moreover, using /E/

blocks do not affect higher layers since DTP replaces /E/
blocks with required /I/s (zeros) upon processing them.

A DTP message consists of a three-bit message type, and
a 53-bit payload. There are five different message types in
DTP: INIT, INIT-ACK, BEACON, BEACON-JOIN, and
BEACON-MSB. As a result, three bits are sufficient to en-
code all possible message types. The payload of a DTP mes-
sage contains the local (global) counter of the sender. Since
the local counter is a 106-bit integer and there are only 53
bits available in the payload, each DTP message carries the
53 least significant bits of the counter. In 10 GbE, a clock
counter increments at every 6.4 ns (=1/156.25MHz), and it
takes about 667 days to overflow 53 bits. DTP occasion-
ally transmits the 53 most significant bits in a BEACON-MSB
message in order to prevent overflow.

As mentioned in Section 4.1, it is always possible to trans-
mit one protocol message after/before an Ethernet frame is
transmitted. This means that when the link is fully saturated
with Ethernet frames DTP can send a BEACON message ev-
ery 200 clock cycles (≈ 1280 ns) for MTU-sized (1522B)
frames7 and 1200 clock cycles (≈ 7680 ns) at worst for
jumbo-sized (≈9kB) frames. The PHY requires about 191
66-bit blocks and 1,129 66-bit blocks to transmit a MTU-
sized or jumbo-sized frame, respectively. This is more than
sufficient to precisely synchronize clocks as analyzed in Sec-
tion 3.3 and evaluated in Section 6. Further, DTP communi-
cates frequently when there are no Ethernet frames, e.g every
200 clock cycles, or 1280 ns: The PHY continuously sends
/E/ when there are no Ethernet frames to send.

5. PRACTICAL CONSIDERATIONS

5.1 Accessing DTP counters

Applications access the DTP counter via a DTP daemon

that runs in each server. A DTP daemon regularly (e.g.,
once per second) reads the DTP counter of a network in-
terface card via a memory-mapped IO in order to minimize
errors in reading the counter. Further, TSC counters are em-
ployed to estimate the frequency of the DTP counter. A
TSC counter is a reliable and stable source to implement
software clocks [46, 50, 25]. Modern systems support in-

7It includes 8-byte preambles, an Ethernet header, 1500-byte
payload and a checksum value.

variant TSC counters that are not affected by CPU power
states [10]. Applications can accurately estimate DTP coun-
ters via a get_DTP_counter API that interpolates the
DTP counter at any moment using TSC counters and the es-
timated DTP clock frequency. Similar techniques are used to
implement gettimeofday(). The details of how a DTP
daemon works and how the API is implemented is standard.
Note that DTP counters of each NIC are running at the same
rate on every server in a DTP-enabled network and, as a re-
sult, software clocks that DTP daemons implement are also
tightly synchronized.

5.2 External Synchronization

We discuss one simple approach that extends DTP to sup-
port external synchronization, although there could be many
other approaches. One server (either a timeserver or a com-
modity server that uses PTP or NTP) periodically (e.g., once
per second) broadcasts a pair, DTP counter and universal
time (UTC), to other servers. Upon receiving consecutive
broadcast messages, each DTP daemon estimates the fre-
quency ratio between the received DTP counters and UTC
values. Next, applications can read UTC by interpolating
the current DTP counter with the frequency ratio in a similar
fashion as the method discussed in Section 5.1. Again, DTP
counters of each NIC are running at the same rate, and as a
result, UTC at each server can also be tightly synchronized
with some loss of precision due to errors in reading system
clocks. It is also possible to combine DTP and PTP to im-
prove the precision of external synchronization further: A
timeserver timestamps sync messages with DTP counters,
and delays between the timeserver and clients are measured
using DTP counters.

5.3 Incremental Deployment

DTP requires the physical layer to be modified. As a re-
sult, in order to deploy DTP, network devices must be modi-
fied. As there is usually a single switching chip inside a net-
work device [2], the best strategy to deploy DTP is to imple-
ment it inside the switching chip. Then network devices with
DTP-enabled switching chips can create a DTP-enabled net-
work. This would require updating the firmware, or possibly
replacing the switching chip. PTP uses a similar approach
in order to improve precision: PTP-enabled switches have a
dedicated logic inside the switching chip for processing PTP
packets and PTP-enabled NICs have hardware timestamp-
ing capabilities and PTP hardware clocks (PHC). Therefore,
the cost of achieving the best configuration of PTP is essen-
tially the same as the cost of deploying DTP, as both require
replacing NICs and switches.

An alternative way to deploy DTP is to use FPGA-based
devices. FPGA-based NICs and switches [5, 43] have more
flexibility of updating firmware. Further, customized PHYs
can be easily implemented and deployed with modern FP-
GAs that are equipped with high-speed transceivers.

One of the limitations of DTP is that it is not possible
to deploy DTP on routers or network devices with multi-
ple line cards without sacrificing precision. Network ports
on separate line cards typically communicate via a bus inter-

S4 S5 S6 S7 S8 S9 S10 S11

S1

S0

S2 S3

IBM Switch

Timeserver

DTP-NIC

Mellanox

Figure 5: Evaluation Setup

face. As a result, it is not possible to maintain a single global
counter with high precision over a shared bus, although each
line card can have its own separate global counter. Fortu-
nately, as long as all switches and line cards form a con-
nected graph, synchronization can be maintained.

Replacing or updating switches and NICs in a datacen-
ter at once is not possible due to both cost and availability.
Importantly, DTP can be incrementally deployed: NICs and
a ToR switch within the same rack are updated at the same
time, and aggregate and core switches are updated incremen-
tally from the lower levels of a network topology. Each DTP-
enabled rack elects one server to work as a master for PTP /
NTP. Then, servers within the same rack will be tightly syn-
chronized, but servers from different racks are less tightly
synchronized depending on the performance of PTP / NTP.
When two independently DTP-enabled racks start commu-
nicating via a DTP-enabled switch, servers from two racks
will be tightly synchronized both internally and externally
after communicating BEACON_JOIN messages.

5.4 Following The Fastest Clock

DTP assumes that oscillators of DTP-enabled devices op-
erate within a range defined by IEEE 802.3 standard (Sec-
tion 3.1). However, in practice, this assumption can be bro-
ken, and an oscillator in a network could run at a frequency
outside the range specified in the standard. This could lead
to many jumps from devices with slower oscillators. More
importantly, the maximum offset between two devices could
be larger than 4TD. One approach to address the problem is
to choose a network device with a reliable and stable oscil-
lator as a master node. Then, through DTP daemons, it is
possible to construct a DTP spanning tree using the master
node as a root. This is similar to PTP’s best master clock
algorithm. Next, at each level of the tree, a node uses the
remote counter of its parent node as the global counter. If an
oscillator of a child node runs faster than its parent node, the
local counter of a child should stall occasionally in order to
keep the local counter monotonically increasing. We leave
this design as a future work.

6. EVALUATION

In this section, we attempt to answer following questions:
• Precision: In Section 3.3, we showed that the precision

of DTP is bounded by 4TD where D is the longest
distance between any two nodes in terms of number
of hops. In this section, we demonstrate and measure
that precision is indeed within the 4TD bound via a
prototype and deployed system.
• Scalability: We demonstrate that DTP scales as the

number of hops of a network increases.

Further, we measured the precision of accessing DTP
from software and compared DTP against PTP.

6.1 Evaluation Setup

For the DTP prototype and deployment, we used pro-
grammable NICs plugged into commodity servers: We used
DE5-Net boards from Terasaic [3]. A DE5-Net board is an
FPGA development board with an Altera Stratix V [15] and
four Small Form-factor Pluggable (SFP+) modules. We im-
plemented the DTP sublayer and the 10 GbE PHY using the
Bluespec language [1] and Connectal framework [32]. We
deployed DE5-Net boards on a cluster of twelve Dell R720
servers. Each server was equipped with two Xeon E5-2690
processors and 96 GB of memory. All servers were in the
same rack in a datacenter. The temperature of the datacenter
was stable and cool.

We created a DTP network as shown in Figure 5: A tree
topology with the height of two, i.e. the maximum num-
ber of hops between any two leaf servers was four. DE5-
Net boards of the root node, S0, and intermediate nodes,
S1 ∼ S3, were configured as DTP switches, and those of the
leaves (S4 ∼ S11) were configured as DTP NICs. We used
10-meter Cisco copper twinax cables to a DE5-Net board’s
SFP+ modules. The measured one-way delay (OWD) be-
tween any two DTP devices was 43 to 45 cycles (≈ 280 ns).

We also created a PTP network with the same servers as
shown in Figure 5 (PTP used Mellanox NICs). Each Mel-
lanox NIC was a Mellanox ConnectX-3 MCX312A 10G
NIC. The Mellanox NICs supported hardware timestamp-
ing for incoming and outgoing packets which was crucial
for achieving high precision in PTP. A VelaSync timeserver
from Spectracom was deployed as a PTP grandmaster clock.
An IBM G8264 cut-through switch was used to connect the
servers including the timeserver. As a result, the number of
hops between any two servers in the PTP network was al-
ways two. Cut-through switches are known to work well in
PTP networks [52]. We deployed a commercial PTP solu-
tion (Timekeeper [16]) in order to achieve the best precision
in 10 Gigabit Ethernet. Note that the IBM switch was con-
figured as a transparent clock.

The timeserver multicasted PTP timing information every
second, i.e. the synchronization rate was once per second,
which was the recommended sync rate by the provider. Note
that each sync message was followed by Follow_Up and
Announce messages. Further, we enabled PTP UNICAST

capability, which allowed the server to send unicast sync
messages to individual PTP clients once per second in ad-
dition to multicast sync messages. In our configuration, a
client sent two Delay_Req messages per 1.5 seconds.

6.2 Methodology

Measuring offsets at nanosecond scale is a very challeng-
ing problem. One approach is to let hardware generate pulse
per second (PPS) signals and compare them using an oscil-
loscope. Another approach, which we use, is to measure
the precision directly in the PHY. Since we are mainly inter-
ested in the clock counters of network devices, we developed
a logging mechanism in the PHY.

-25.6

-12.8

 0

 12.8

 25.6

0 3 6

-4

-2

 0

 2

 4
O

ffs
et

 (n
s)

O
ffs

et
 (t

ic
ks

)

Time (mins)

s1-s4
s1-s5
s1-s0

s2-s7
s2-s8
s2-s0

s3-s10
s3-s11
s3-s0

(a) DTP: BEACON interval = 200.
Heavily loaded with MTU packets.

-25.6

-12.8

 0

 12.8

 25.6

0 3 6

-4

-2

 0

 2

 4

O
ffs

et
 (n

s)

O
ffs

et
 (t

ic
ks

)

Time (mins)

s1-s4
s1-s5
s1-s0

s2-s7
s2-s8
s2-s0

s3-s10
s3-s11
s3-s0

(b) DTP: BEACON interval = 1200.
Heavily loaded with Jumbo packets.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-2 -1 0 1 2 3 4

P
D

F

OWD - delay (ticks)

s3-s9
s3-s10
s3-s11

s3-s0

(c) DTP: Offset distribution from S3.
(BEACON interval = 1200 cycles)

-640

-320

0

320

640

10 25 40

O
ffs

et
 (n

an
os

ec
on

d)

Time (mins)

s4
s5

s6
s7

s8
s11

(d) PTP: Idle network

-75
-50
-25

 0
 25
 50
 75

10 25 40

O
ffs

et
 (m

ic
ro

se
co

nd
)

Time (mins)

s4
s5
s6

s7
s8

s11

(e) PTP: Medium loaded

-200

-100

 0

 100

 200

10 25 40

O
ffs

et
 (m

ic
ro

se
co

nd
)

Time (mins)

s4
s5
s6

s7
s8

s11

(f) PTP: Heavily loaded
Figure 6: Precision of DTP and PTP. A tick is 6.4 nanoseconds.

-640

-320

-102.4
 0

 102.4

 320

 640

10 25 40
-100

-50

-16
 0
 16

 50

 100

O
ffs

et
 (n

s)

O
ffs

et
 (t

ic
ks

)

Time (mins)

s4
s5

s7
s8

s9
s11

(a) Before smoothing: Raw offsetsw

-640

-320

-102.4
 0

 102.4

 320

 640

10 25 40
-100

-50

-16
 0
 16

 50

 100

O
ffs

et
 (n

s)

O
ffs

et
 (t

ic
ks

)

Time (mins)

s4
s5

s7
s8

s9
s11

-4
-2
 0
 2

Ti
ck

s

(b) After smoothing: Window size = 10
Figure 7: Precision of DTP daemon.

Each leaf node generates and sends a 106-bit log message
twice per second to its peer, a DTP switch. DTP switches
also generate log messages between each other twice per
second. A log message contains a 53-bit estimate of the
DTP counter generated by the DTP daemon, t0 (See Sec-
tion 5), which is then timestamped in the DTP layer with
the lower 53-bits of the global counter (or the local counter
if it is a NIC). The 53-bit timestamp, t1, is appended to the
original message generated by the DTP daemon, and, as a
result, a 106-bit message is generated by the sender. Upon
arriving at an intermediate DTP switch, the log message is
timestamped again, t2, in the DTP layer with the receiver’s
global counter. Then, the original 53-bit log message (t0)
and two timestamps (t1 from the sender and t2 from the re-
ceiver) are delivered to a DTP daemon running on the re-
ceiver. By computing offsethw = t2 − t1 − OWD where
OWD is the one-way delay measured in the INIT phase, we
can estimate the precision between two peers. Similarly, by
computing offsetsw = t1 − t0, we can estimate the preci-
sion of a DTP daemon. Note that offsethw includes the non-
deterministic variance from the synchronization FIFO and
offsetsw includes the non-deterministic variance from the

PCIe bus. We can accurately approximate both the offsethw
and offsetsw with this method.

For PTP, the Timekeeper provides a tool that reports mea-
sured offsets between the timeserver and all PTP clients.
Note that our Mellanox NICs have PTP hardware clocks
(PHC). For a fair comparison against DTP that synchro-
nizes clocks of NICs, we use the precision numbers mea-
sured from a PHC. Also, note that a Mellanox NIC times-
tamps PTP packets in the NIC for both incoming and outgo-
ing packets.

The PTP network was mostly idle except when we intro-
duced network congestion. Since PTP uses UDP datagrams
for time synchronization, the precision of PTP can vary re-
lying on network workloads. As a result, we introduced net-
work workloads between servers using iperf [11]. Each
server occasionally generated MTU-sized UDP packets des-
tined for other servers so that PTP messages could be
dropped or arbitrarily delayed.

To measure how DTP responds to varying network con-
ditions, we used the same heavy load that we used for
PTP and also changed the BEACON interval during experi-
ments from 200 to 1200 cycles, which changed the Ethernet
frame size from 1.5kB to 9kB. Recall that when a link is
fully saturated with MTU-sized (Jumbo) packets, the mini-
mum BEACON interval possible is 200 (1200) cycles.

6.3 Results

Figure 6 and 7 show the results: We measured precision
of DTP in Figure 6a-c, PTP in Figure 6d-f, and the DTP dae-
mon in Figure 7. For all results, we continuously synchro-
nized clocks and measured the precision (clock offsets) over
at least a two-day period in Figure 6 and at least a few-hour
period in Figure 7.

Figures 6a-b demonstrate that the clock offsets between
any two directly connected nodes in DTP never differed by
more than four clock ticks; i.e. offsets never differed by
more than 25.6 nanoseconds (4TD = 4 × 6.4 × 1 = 25.6):
Figures 6a and b show three minutes out of a two-day mea-
surement period and Figure 6c shows the distribution of the

measured offsets with node S3 for the entire two-day period.
The network was always under heavy load and we var-
ied the Ethernet frame size by varying the BEACON interval
between 200 cycles in Figure 6a and 1200 cycles in Fig-
ure 6b. DTP performed similarly under idle and medium
load. Since we measured all pairs of nodes and no off-
set was ever greater than four, the results support that pre-
cision was bounded by 4TD for nodes D hops away from
each other. Figure 7 shows the precision of accessing a
DTP counter via a DTP daemon: Figure 7a shows the raw
offsetsw and Figure 7b shows the offsetsw after applying a
moving average algorithm with a window size of 10. We
applied the moving average algorithm to smooth the effect
of the non-determinism from the PCIe bus, which is shown
as occasional spikes. The offset between a DTP daemon in
software and the DTP counter in hardware was usually no
more than 16 clock ticks (≈ 102.4ns) before smoothing,
and was usually no more than 4 clock ticks (≈ 25.6ns) after
smoothing.

Figures 6d-f show the measured clock offsets between
each node and the grandmaster timeserver using PTP. Each
figure shows minutes to hours of a multi-day measurement
period, enough to illustrate the precision trends. We varied
the load of the network from idle (Figure 6d), to medium
load where five nodes transmitted and received at 4 Gbps
(Figure 6e), to heavy load where the receive and trans-
mit paths of all links except S11 were fully saturated at 9
Gbps (Figure 6f). When the network was idle, Figure 6d
showed that PTP often provided hundreds of nanoseconds
of precision, which matches literature [7, 17]. When the
network was under medium load, Figure 6e showed the
offsets of S4 ∼ S8 became unstable and reached up to 50
microseconds. Finally, when the network was under heavy
load, Figure 6f showed that the maximum offset degraded
to hundreds of microseconds. Note that we measured, but
do not report the numbers from the PTP daemon, ptpd, be-
cause the precision with the daemon was the same as the
precision with the hardware clock, PHC. Also, note that all
reported PTP measurements include smoothing and filtering
algorithms.

There are multiple takeaways from these results.
1. DTP more tightly synchronized clocks than PTP.
2. The precision of DTP was not affected by network

workloads. The maximum offset observed in DTP did
not change either when load or Ethernet frame size (the
BEACON interval) changed. PTP, on the other hand,
was greatly affected by network workloads and the pre-
cision varied from hundreds of nanoseconds to hun-
dreds of microseconds depending on the network load.

3. DTP scales. The precision of DTP only depends on
the number of hops between any two nodes in the net-
work. The results show that precision (clock offsets)
were always bounded by 4TD nanoseconds.

4. DTP daemons can access DTP counters with tens of
nanosecond precision.

5. DTP synchronizes clocks in a short period of time,
within two BEACON intervals. PTP, however, took
about 10 minutes for a client to have an offset below

Data Rate Encoding Data Width Frequency Period ∆

1G 8b/10b 8 bit 125 MHz 8 ns 25
10G 64b/66b 32 bit 156.25 MHz 6.4 ns 20
40G 64b/66b 64 bit 625 MHz 1.6 ns 5

100G 64b/66b 64 bit 1562.5 MHz 0.64 ns 2

Table 2: Specifications of the PHY at different speeds

one microsecond. This was likely because PTP needs
history to apply filtering and smoothing effectively. We
omitted these results due to limited space.

6. PTP’s performance was dependent upon network con-
ditions, configuration such as transparent clocks, and
implementation.

7. DISCUSSION

What about 1G, 40G or 100G? In this paper we discussed
and demonstrated how we can implement and deploy DTP
over a datacenter focusing on 10 GbE links. However, the
capacity of links in a datacenter is not homogeneous. Servers
can be connected to Top-of-Rack switches via 1 Gbps links,
and uplinks between switches and routers can be 40 or 100
Gbps. Nonetheless, DTP is still applicable to these cases be-
cause the fundamental fact still holds: Two physically con-
nected devices in high-speed Ethernet (1G and beyond) are
already synchronized to transmit and receive bitstreams. The
question is how to modify DTP to support thousands of thou-
sands of devices with different link capacities.

DTP can be extended to support 40 GbE and 100 GbE
in a straight forward manner. The clock frequency required
to operate 40 or 100 Gbps is multiple of that of 10 Gbps
(Table 2). In fact, switches that support 10 Gbps and be-
yond normally use a clock oscillator running at 156.25 MHz
to support all ports [14]. As a result, incrementing clock
counters by different values depending on the link speed is
sufficient. In particular, see the last column of Table 2, if
a counter tick represents 0.32 nanoseconds, then DTP will
work at 10, 40, and 10GbE by adjusting a counter value to
match the corresponding clock period (i.e. 20 × 0.32 = 6.4
ns, 5×0.32 = 1.6 ns, and 2×0.32 = 0.64 ns, respectively).

Similarly, DTP can be made to work with 1 GbE by incre-
menting the counter of a 1 GbE port by 25 at every tick (see
the last column of Table 2). However, the PHY of 1 Gbps
is different, it uses a 8b/10b encoding instead of a 64b/66b
encoding, and we need to adapt DTP to send clock counter
values with the different encoding.

8. RELATED WORK

Clock synchronization is critical to systems and has been
extensively studied from different areas. As we discussed
NTP [41], PTP [8], and GPS [37] in Section 2, we briefly
discuss other clock synchronization protocols.

Because NTP normally does not provide precise clock
synchronization in a local area network (LAN), much of the
literature has focused improving NTP without extra hard-
ware. One line of work was to use TSC instructions to im-
plement precise software clocks called TSCclock, and later
called RADclock [25, 46, 50]. It was designed to replace
ntpd and ptpd (daemons that run NTP or PTP) and pro-

vide sub-microsecond precision without any extra hardware
support. Other software clocks include Server Time Pro-
tocol (STP) [44], Coordinated Cluster Time (CCT) [28],
AP2P [49], and skewless clock synchronization [40], which
provide microsecond precision.

Implementing clock synchronization in hardware has
been demonstrated by Fiber Channel (FC) [6] and discussed
by Kopetz and Ochsenreiter [33]. FC embeds protocol mes-
sages into interpacket gaps similar to DTP. However, it is not
a decentralized protocol and the network fabric simply for-
wards protocol messages between a server and a client using
physical layer encodings. As a result, it does not eliminate
non-deterministic delays in delivering protocol messages.

Synchronous optical networks (SONET/SDH) is a stan-
dard that transmits multiple bitstreams (such as Voice, Ether-
net, TCP/IP) over an optical fiber. In order to reduce buffer-
ing of data between network elements, SONET requires
precise frequency synchronization (i.e., syntonization). An
atomic clock is commonly deployed as a Primary Reference
Clock (PRC), and other network elements are synchronized
to it either by external timing signals or by recovering clock
signals from incoming data. DTP does not synchronize fre-
quency of clocks, but values of clock counters.

Synchronous Ethernet (SyncE) [12] was introduced for
reliable data transfer between synchronous networks (e.g.
SONET/SDH) and asynchronous networks (e.g. Ethernet).
Like SONET, it synchronizes the frequency of nodes in a
network, not clocks (i.e. syntonization). It aims to provide a
synchronization signal to all Ethernet network devices. The
idea is to use the recovered clock from the receive (RX)
path to drive the transmit (TX) path such that both the RX
and TX paths run at the same clock frequency. As a result,
each Ethernet device uses a phase locked loop to regenerate
the synchronous signal. As SyncE itself does not synchro-
nize clocks in a network, PTP is often employed along with
SyncE to provide tight clock synchronization. One such ex-
ample is White Rabbit which we discuss below.

White Rabbit [43, 35, 39] has by far the best preci-
sion in packet-based networks. The goal of White Rab-
bit (WR) [43] was to synchronize up to 1000 nodes with
sub-nanosecond precision. It uses SyncE to syntonize the
frequency of clocks of network devices, and WR-enabled
PTP [35] to embed the phase difference between a master
and a slave into PTP packets. WR demonstrated that the pre-
cision of a non-disturbed system was 0.517ns [39]. WR also
requires WR-enabled switches, and synchronizes slaves that
are up to four-hops apart from the timeserver. WR works on
a network with a tree topology and with a limited number of
levels and servers. Furthermore, it currently supports 1 Gi-
gabit Ethernet only, and it is not clear how WR behaves un-
der heavy network loads as it uses PTP packets. DTP does
not rely on any specific network topology, and can be ex-
tended to protocols with higher speeds.

Similarly, BroadSync [19] and ChinaMobile [38] also
combine SyncE and PTP to provide hundreds of nanosecond
precision. The Data Over Cable Service Interface Specifi-
cation (DOCSIS) is a frequency synchronized network de-
signed to time divide data transfers between multiple ca-

ble modems (CM) and a cable modem termination system
(CMTS). The DOCSIS time protocol [20] extends DOC-
SIS to synchronize time by approximating the internal delay
from the PHY and asymmetrical path delays between a ref-
erence CM and the CMTS. We expect that combining DTP
with frequency synchronization, SyncE, will also improve
the precision of DTP to sub-nanosecond precision as it be-
comes possible to minimize or remove the variance of the
synchronization FIFO between the DTP TX and RX paths.

9. CONCLUSION

Synchronizing clocks with bounded and high precision is
not trivial, but can improve measurements (e.g. one-way de-
lay) and performance (e.g. Spanner TrueTime). In this pa-
per, we presented DTP that tightly synchronizes clocks with
zero network overhead (no Ethernet packets). It exploits the
fundamental fact that two physically connected devices are
already synchronized to transmit and receive bitstreams. We
demonstrated that DTP can synchronize clocks of network
components at tens of nanoseconds of precision, can scale
up to synchronize an entire datacenter network, and can be
accessed from software with usually better than twenty five
nanosecond precision. As a result, the end-to-end precision
is the precision from DTP in the network (i.e. 25.6 nanosec-
onds for directly connected nodes and 153.6 nanoseconds for
a datacenter with six hops) plus fifty nanosecond precision
from software.

10. ACKNOWLEDGMENTS

This work was partially funded and supported by a
SLOAN Research Fellowship received by Hakim Weather-
spoon, DARPA MRC, DARPA CSSG (D11AP00266), NSF
CAREER (1053757), NSF TRUST (0424422), Cisco, and
Intel. We would like to thank our shepherd, Alex Snoeren,
and the anonymous reviewers for their comments.

11. REFERENCES
[1] Bluespec. www.bluespec.com.
[2] Broadcom.

http://http://www.broadcom.com/products/Switching/Data-Center.
[3] DE5-Net FPGA development kit. http://de5-net.terasic.com.tw.
[4] Endace DAG network cards. http://www.endace.com/

endace-dag-high-speed-packet-capture-cards.html.
[5] Exablaze. https://exablaze.com/.
[6] Fibre channel. http://fibrechannel.org.
[7] Highly accurate time synchronization with ConnectX-3 and

Timekeeper. http://www.mellanox.com/pdf/whitepapers/WP_
Highly_Accurate_Time_Synchronization.pdf.

[8] IEEE Standard 1588-2008. http:
//ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4579757.

[9] IEEE Standard 802.3-2008.
http://standards.ieee.org/about/get/802/802.3.html.

[10] Intel 64 and IA-32 architectures software developer manuals.
http://www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html.

[11] iperf. https://iperf.fr.
[12] ITU-T Rec. G.8262. http://www.itu.int/rec/T-REC-G.8262.
[13] Mellanox. www.mellanox.com.
[14] Open compute project. http://www.opencompute.org.
[15] Stratix V FPGA. http:

//www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp.

[16] Timekeeper. http://www.fsmlabs.com/timekeeper.
[17] IEEE 1588 PTP and Analytics on the Cisco Nexus 3548 Switch.

http://www.cisco.com/c/en/us/products/collateral/switches/
nexus-3000-series-switches/white-paper-c11-731501.html, 2014.

[18] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A scalable,
commodity data center network architecture. In Proceedings of the
ACM SIGCOMM Conference on Data Communication (2008).

[19] BROADCOM. Ethernet time synchronization. http:
//www.broadcom.com/collateral/wp/StrataXGSIV-WP100-R.pdf.

[20] CHAPMAN, J. T., CHOPRA, R., AND MONTINI, L. The DOCSIS
timing protocol (DTP) generating precision timing services from a
DOCSIS system. In Proceedings of the Spring Technical Forum

(2011).
[21] COCHRAN, R., MARINESCU, C., AND RIESCH, C. Synchronizing

the Linux System Time to a PTP Hardware Clock. In Proceedings of

the International IEEE Symposium on Precision Clock
Synchronization for Measurement Control and Communication

(2011).
[22] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST, C.,

FURMAN, J. J., GHEMAWAT, S., GUBAREV, A., HEISER, C.,
HOCHSCHILD, P., HSIEH, W., KANTHAK, S., KOGAN, E., LI, H.,
LLOYD, A., MELNIK, S., MWAURA, D., NAGLE, D., QUINLAN,
S., RAO, R., ROLIG, L., SAITO, Y., SZYMANIAK, M., TAYLOR,
C., WANG, R., AND WOODFORD, D. Spanner: Google’s
globally-distributed database. In Proceedings of the 10th USENIX

conference on Operating Systems Design and Implementation (2012).
[23] COSTA, P., BALLANI, H., RAZAVI, K., AND KASH, I. R2C2: A

network stack for rack-scale computers. In Proceedings of the ACM

Conference on SIGCOMM (2015).
[24] CRISTIAN, F. Probabilistic clock synchronization. Distributed

Computing 3 (September 1989), 146–158.
[25] DAVIS, M., VILLAIN, B., RIDOUX, J., ORGERIE, A.-C., AND

VEITCH, D. An IEEE-1588 Compatible RADclock. In Proceedings

of International IEEE Symposium on Precision Clock

Synchronization for Measurement, Control and Communication
(2012).

[26] EDWARDS, T. G., AND BELKIN, W. Using SDN to Facilitate
Precisely Timed Actions on Real-time Data Streams. In Proceedings

of the Third Workshop on Hot Topics in Software Defined Networking
(2014).

[27] FREEDMAN, D. A., MARIAN, T., LEE, J. H., BIRMAN, K.,
WEATHERSPOON, H., AND XU, C. Exact temporal characterization
of 10 Gbps optical wide-area network. In Proceedings of the 10th

ACM SIGCOMM Conference on Internet measurement (2010).
[28] FROEHLICH, S., HACK, M., MENG, X., AND ZHANG, L.

Achieving precise coordinated cluster time in a cluster environment.
In Proceedings of International IEEE Symposium on Precision Clock

Synchronization for Measurement, Control and Communication

(2008).
[29] GUSELLA, R., AND ZATTI, S. The Accuracy of the Clock

Synchronization Achieved by TEMPO in Berkeley UNIX 4.3BSD.
IEEE Transactions on Software Engineering 15, 7 (July 1989),
847–853.

[30] JASPERNEITE, J., SHEHAB, K., AND WEBER, K. Enhancements to
the time synchronization standard IEEE-1588 for a system of
cascaded bridges. In Proceedings of the IEEE International

Workshop in Factory Communication Systems (2004).
[31] KACHRIS, C., BERGMAN, K., AND TOMKOS, I. Optical

Interconnects for Future Data Center Networks. Springer, 2013.
[32] KING, M., HICKS, J., AND ANKCORN, J. Software-driven hardware

development. In Proceedings of the 2015 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays (2015).
[33] KOPETZ, H., AND OCHSENREITER, W. Clock synchronization in

distributed real-time systems. IEEE Transactions on Computers C-36

(Aug 1987), 933–940.
[34] LAMPORT, L., AND MELLIAR-SMITH, P. M. Byzantine Clock

Synchronization. In Proceedings of the Third Annual ACM

Symposium on Principles of Distributed Computing (1984).
[35] LAPINSKI, M., WLOSTOWKI, T., SERRANO, J., AND ALVAREZ, P.

White Rabbit: a PTP Application for Robust Sub-nanosecond
Synchronization. In Proceedings of the International IEEE

Symposium on Precision Clock Synchronization for Measurement

Control and Communication (2011).
[36] LEE, K. S., WANG, H., AND WEATHERSPOON, H. SoNIC: Precise

Realtime Software Access and Control of Wired Networks. In
Proceedings of the 10th USENIX Symposium on Networked Systems
Design and Implementation (2013).

[37] LEWANDOWSKI, W., AZOUBIB, J., AND KLEPCZYNSKI, W. J.
GPS: primary tool for time transfer. Proceedings of the IEEE 87

(January 1999), 163–172.
[38] LI, H. IEEE 1588 time synchronization deployment for mobile

backhaul in China Mobile, 2014. Keynote speech in the International
IEEE Symposium on Precision Clock Synchronization for
Measurement Control and Communication.

[39] LIPINSKI, M., WLOSTOWSKI, T., SERRANO, J., ALVAREZ, P.,
COBAS, J. D. G., RUBINI, A., AND MOREIRA, P. Performance
results of the first White Rabbit installation for CNGS time transfer.
In Proceedings of the International IEEE Symposium on Precision

Clock Synchronization for Measurement Control and Communication

(2012).
[40] MALLADA, E., MENG, X., HACK, M., ZHANG, L., AND TANG, A.

Skewless Network Clock Synchronization. In Proceedings of the 21st

IEEE International Conference on Network Protocols (2013).
[41] MILLS, D. L. Internet time synchronization: the network time

protocol. IEEE transactions on Communications 39 (October 1991),
1482–1493.

[42] MIZRAHI, T., AND MOSES, Y. Software Defined Networks: It’s
about time. In Proceedings of the IEEE International Conference on

Computer Communications (2016).
[43] MOREIRA, P., SERRANO, J., WLOSTOWSKI, T., LOSCHMIDT, P.,

AND GADERER, G. White Rabbit: Sub-Nanosecond Timing
Distribution over Ethernet. In Proceedings of the International IEEE

Symposium on Precision Clock Synchronization for Measurement

Control and Communication (2009).
[44] OGDEN, B., FADEL, J., AND WHITE, B. IBM system z9 109

technical introduction.
[45] OHLY, P., LOMBARD, D. N., AND STANTON, K. B. Hardware

assisted precision time protocol. design and case study. In
Proceedings of the 9th LCI International Conference on

High-Performance Clustered Computing (2008).
[46] PÁSZTOR, A., AND VEITCH, D. PC Based Precision Timing

Without GPS. In Proceedings of the ACM SIGMETRICS

International Conference on Measurement and Modeling of

Computer Systems (2002).
[47] PERRY, J., OUSTERHOUT, A., BALAKRISHNAN, H., SHAH, D.,

AND FUGAL, H. Fastpass: A centralized "zero-queue" datacenter
network. In Proceedings of the ACM Conference on SIGCOMM

(2014).
[48] SCHNEIDER, F. B. Understanding Protocols for Byzantine Clock

Synchronization. Tech. Rep. TR87-859, Cornell University, August
1987.

[49] SOBEIH, A., HACK, M., LIU, Z., AND ZHANG, L. Almost
Peer-to-Peer Clock Synchronization. In Proceedings of IEEE

International Parallel and Distributed Processing Symposium (2007).
[50] VEITCH, D., BABU, S., AND PÀSZTOR, A. Robust Synchronization

of Software Clocks Across the Internet. In Proceedings of the 4th
ACM SIGCOMM Conference on Internet Measurement (2004).

[51] ZARICK, R., HAGEN, M., AND BARTOS, R. The impact of network
latency on the synchronization of real-world IEEE 1588-2008
devices. In Proceedings of the International IEEE Symposium on

Precision Clock Synchronization for Measurement Control and
Communication (2010).

[52] ZARICK, R., HAGEN, M., AND BARTOS, R. Transparent clocks vs.
enterprise ethernet switches. In Proceedings of the International

IEEE Symposium on Precision Clock Synchronization for

Measurement, Control and Communication (2011).
[53] ZENG, H., ZHANG, S., YE, F., JEYAKUMAR, V., JU, M., LIU, J.,

MCKEOWN, N., AND VAHDAT, A. Libra: Divide and conquer to
verify forwarding tables in huge networks. In Proceedings of the 11th

USENIX Symposium on Networked Systems Design and
Implementation (2014).

