
4

Isotope: ACID Transactions for Block Storage

JI-YONG SHIN, Cornell University and Yale University
MAHESH BALAKRISHNAN, Yale University
TUDOR MARIAN, Google, Inc.
HAKIM WEATHERSPOON, Cornell University

Existing storage stacks are top heavy and expect little from block storage. As a result, new high-level storage
abstractions—and new designs for existing abstractions—are difficult to realize, requiring developers to
implement from scratch complex functionality such as failure atomicity and fine-grained concurrency control.
In this article, we argue that pushing transactional isolation into the block store (in addition to atomicity and
durability) is both viable and broadly useful, resulting in simpler high-level storage systems that provide
strong semantics without sacrificing performance. We present Isotope, a new block store that supports ACID
transactions over block reads and writes. Internally, Isotope uses a new multiversion concurrency control
protocol that exploits fine-grained, subblock parallelism in workloads and offers both strict serializability and
snapshot isolation guarantees. We implemented several high-level storage systems over Isotope, including
two key-value stores that implement the LevelDB API over a hash table and B-tree, respectively, and a
POSIX file system. We show that Isotope’s block-level transactions enable systems that are simple (100s of
lines of code), robust (i.e., providing ACID guarantees), and fast (e.g., 415MB/s for random file writes). We
also show that these systems can be composed using Isotope, providing applications with transactions across
different high-level constructs such as files, directories, and key-value pairs.

Categories and Subject Descriptors: H.2.4 [Systems]: Transaction Processing; D.4.2 [Storage Manage-
ment]: Secondary Storage, Storage Hierarchies

General Terms: Design, Experimentation, Management, Performance

Additional Key Words and Phrases: Transaction, block storage, isolation

ACM Reference Format:
Ji-Yong Shin, Mahesh Balakrishnan, Tudor Marian, and Hakim Weatherspoon. 2017. Isotope: ACID trans-
actions for block storage. ACM Trans. Storage 13, 1, Article 4 (February 2017), 25 pages.
DOI: http://dx.doi.org/10.1145/3032967

1. INTRODUCTION

With the advent of multicore machines, storage systems such as file systems, key-value
stores, graph stores, and databases are increasingly parallelized over dozens of cores.
Such systems run directly over raw block storage but assume very little about its

This work is partially funded and supported by a SLOAN Research Fellowship received by Hakim Weath-
erspoon, a Facebook Faculty Award received by Mahesh Balakrishnan, DARPA MRC (FA8750-11-2-0256)
and CSSG (D11AP00266), NSF (0424422, 1047540, 1053757, 1151268, 1422544), NIST (60NANB15D327),
Cisco, and Intel. A conference version of this article appeared in the Proceedings of the USENIX Conference
on File and Storage Technologies (FAST), Santa Clara, CA, February 22-25, 2016.
Authors’ addresses: J.-Y. Shin and M. Balakrishnan, Department of Computer Science, Yale University, New
Haven, CT 06511; email: {jyshin, mahesh}@cs.yale.edu; T. Marian, Google, Inc., 1600 Amphitheatre Pkwy,
Mountain View, CA 94043; email: tudorm@google.com; H. Weatherspoon, Department of Computer Science,
Cornell University, Ithaca, NY 14853; email: hweather@cs.cornell.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
2017 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 1553-3077/2017/02-ART4 $15.00
DOI: http://dx.doi.org/10.1145/3032967

ACM Transactions on Storage, Vol. 13, No. 1, Article 4, Publication date: February 2017.

http://dx.doi.org/10.1145/3032967
http://dx.doi.org/10.1145/3032967

4:2 J.-Y. Shin et al.

interface and semantics; usually, the only expectations from the block store are dura-
bility and single-operation, single-block linearizability. As a result, each system im-
plements complex code to layer high-level semantics such as atomicity and isolation
over the simple block address space. While multiple systems have implemented trans-
actional atomicity within the block store [Chao et al. 1992; De Jonge et al. 1993;
Prabhakaran et al. 2008; SanDisk 2015a; Coburn et al. 2013], concurrency control has
traditionally been delegated to the storage system above the block store.

In this article, we propose the abstraction of a transactional block store that provides
isolation in addition to atomicity and durability. A number of factors make isolation a
prime candidate for demotion down the stack.

(1) Isolation is general; since practically every storage system has to ensure safety
under concurrent accesses, an isolation mechanism implemented within the block
layer is broadly useful.

(2) Isolation is hard, especially for storage systems that need to integrate fine-grained
concurrency control with coarse-grained durability and atomicity mechanisms (e.g.,
see ARIES [Mohan et al. 1992]); accordingly, it is better provided via a single, high-
quality implementation within the block layer.

(3) Block-level transactions allow storage systems to effortlessly provide end-user ap-
plications with transactions over high-level constructs such as files or key-value
pairs.

(4) Block-level transactions are oblivious to software boundaries at higher levels of the
stack and can seamlessly span multiple layers, libraries, threads, processes, and
interfaces. For example, a single transaction can encapsulate an end application’s
accesses to an in-process key-value store, an in-kernel file system, and an out-of-
process graph store.

(5) Finally, multiversion concurrency control (MVCC) [Bernstein et al. 1987] provides
superior performance and liveness in many cases but is particularly hard to imple-
ment for storage systems since it requires them to maintain a multiversioned state;
in contrast, many block stores (e.g., log-structured designs) are already internally
multiversioned.

Block-level isolation is enabled and necessitated by recent trends in storage. Block
stores have evolved over time. They are increasingly implemented via a combina-
tion of host-side software and device firmware [Microsoft 2016a; Fusion-io 2015];
they incorporate multiple heterogeneous physical devices under a single address
space [Soundararajan et al. 2010; Shin et al. 2013]; they leverage new NVRAM tech-
nologies to store indirection metadata; and they provide sophisticated functionality
such as virtualization [Microsoft 2016a; Stein 2005], tiering [Microsoft 2016a], dedupli-
cation, and wear leveling. Unfortunately, storage systems such as file systems continue
to assume minimum functionality from the block store, resulting in redundant, com-
plex, and inefficient stacks where layers constantly tussle with each other [Stein 2005].
A second trend that argues for pushing functionality from the file system to a lower
layer is the increasing importance of alternative abstractions that can be implemented
directly over block storage, such as graphs, key-value pairs [Seagate 2016], tables,
caches [Saxena et al. 2012b], tracts [Nightingale et al. 2012], byte-addressable [Badam
and Pai 2011] and write-once [Balakrishnan et al. 2012] address spaces, and so forth.

To illustrate the viability and benefits of block-level isolation, we built Isotope, a
transactional block store that provides isolation (with a choice of strict serializability or
snapshot isolation) in addition to atomicity and durability. Isotope is implemented as an
in-kernel software module running over commodity hardware, exposing a conventional
block read/write interface augmented with beginTX/endTX IOCTLs to demarcate
transactions. Transactions execute speculatively and are validated by Isotope on endTX

ACM Transactions on Storage, Vol. 13, No. 1, Article 4, Publication date: February 2017.

Isotope: ACID Transactions for Block Storage 4:3

by checking for conflicts. To minimize the possibility of conflict-related aborts, applica-
tions can provide information to Isotope about which subparts of each 4KB block are
read or written, allowing Isotope to perform conflict detection at subblock granularity.

Internally, Isotope uses an in-memory multiversion index over a persistent log to
provide each transaction with a consistent, point-in-time snapshot of a block address
space. Reads within a transaction execute against this snapshot, while writes are
buffered in RAM by Isotope. When endTX is called, Isotope uses a new MVCC commit
protocol to determine if the transaction commits or aborts. The commit/abort decision
is a function of the timestamp-ordered stream of recently proposed transactions, as
opposed to the multiversion index; as a result, the protocol supports arbitrarily fine-
grained conflict detection without requiring a corresponding increase in the size of the
index. When transactions commit, their buffered writes are flushed to the log, which
is implemented on an array of physical drives [Shin et al. 2013], and reflected in the
multiversion index. Importantly, aborted transactions do not result in any write I/O to
persistent storage.

Storage systems built over Isotope are simple, stateless, shim layers that focus on
mapping some variable-sized abstraction—such as files, tables, graphs, and key-value
pairs—to a fixed-size block API. We describe several such systems in this article,
including a key-value store based on a hash table index, one based on a B-tree, and
a POSIX user-space file system. These systems do not have to implement their own
fine-grained locking for concurrency control and logging for failure atomicity. They
can expose transactions to end applications without requiring any extra code. Storage
systems that reside on different partitions of an Isotope volume can be composed with
transactions into larger end applications.

Block-level isolation does have its limitations. Storage systems built over Isotope
cannot share arbitrary, in-memory soft states such as read caches across transaction
boundaries, since it is difficult to update such state atomically based on the outcome
of a transaction. Instead, they rely on block-level caching in Isotope by providing
hints about which blocks to cache. We found this approach well suited for both the
file system application (which cached inode blocks, indirection blocks, and allocation
maps) and the key-value stores (which cached their index data structures). In addition,
information is invariably lost when functionality is implemented at a lower level of
the stack: Isotope cannot leverage properties such as commutativity and idempotence
while detecting conflicts.

This article makes the following contributions:

—We revisit the end-to-end argument for storage stacks with respect to transactional
isolation, in the context of modern hardware and applications.

—We propose the abstraction of a fully transactional block store that provides isola-
tion, atomicity, and durability. While others have explored block-level transactional
atomicity [Chao et al. 1992; De Jonge et al. 1993; Prabhakaran et al. 2008; Coburn
et al. 2013], this is the first proposal for block-level transactional isolation.

—We realize this abstraction in a system called Isotope via a new MVCC protocol.
We show that Isotope exploits subblock concurrency in workloads to provide a high
commit rate for transactions and high I/O throughput.

—We describe storage systems built using Isotope transactions—two key-value stores
and a file system—and show that they are simple, fast, and robust, as well as com-
posable via Isotope transactions into larger end applications.

2. MOTIVATION

Block-level isolation is an idea whose time has come. In the 1990s, the authors of
Rio Vista (a system that provided atomic transactions over a persistent memory

ACM Transactions on Storage, Vol. 13, No. 1, Article 4, Publication date: February 2017.

4:4 J.-Y. Shin et al.

abstraction) wrote in Lowell and Chen [1997]: “We believe features such as serial-
izability are better handled by higher levels of software. . . . Adopting any concurrency
control scheme would penalize the majority of applications, which are single-threaded
and do not need locking.” Today, applications run on dozens of cores and are multi-
threaded by default; isolation is a universal need, not a niche feature.

Isolation is simply the latest addition to a long list of features provided by modern
block stores: caching, tiering, mapping, virtualization, deduplication, and atomicity.
This explosion of features has been triggered partly by the emergence of software-
based block layers, ranging from flash FTLs [Fusion-io 2015] to virtualized volume
managers [Microsoft 2016a]. In addition, the block-level indirection necessary for many
of these features has been made practical and inexpensive by hardware advances in the
last decade. In the past, smart block devices such as HP AutoRAID [Wilkes et al. 1996]
were restricted to enterprise settings due to their reliance on battery-backed RAM;
today, SSDs routinely implement indirection in FTLs, using supercapacitors to flush
metadata and data on a power failure. Software block stores in turn can store metadata
on these SSDs, on raw flash, or on derivatives such as flash-backed RAM [Jose et al.
2013] and Auto-Commit Memory [SanDisk 2015b].

What about the end-to-end argument? We argue that block-level isolation passes
the litmus test imposed by the end-to-end principle [Saltzer et al. 1984] for pushing
functionality down the stack: it is broadly useful, is efficiently implementable at a lower
layer of the stack with negligible performance overhead, and leverages machinery that
already exists at that lower layer. The argument regarding utility is obvious: pushing
functionality down the stack is particularly useful when it is general enough to be
used by the majority of applications, which is the case for isolation or concurrency
control. However, the other motivations for a transactional block store require some
justification.

Isolation is hard. Storage systems typically implement pessimistic concurrency con-
trol via locks, opening the door to a wide range of aberrant behavior such as deadlocks
and livelocks. This problem is exacerbated when developers attempt to extract more
parallelism via fine-grained locks, and when these locks interact with coarse-grained
failure atomicity and durability mechanisms [Mohan et al. 1992]. Transactions can pro-
vide a simpler programming model that supplies isolation, atomicity, and durability
via a single abstraction. Additionally, transactions decouple the policy of isolation—as
expressed through beginTX/endTX calls—from the concurrency control mechanism
used to implement it under the hood.

Isolation is harder when exposed to end applications. Storage systems often provide
concurrency control APIs over their high-level storage abstractions; for example, NTFS
offers transactions over files, while Linux provides file-level locking. Unfortunately,
these high-level concurrency control primitives often have complex, weakened, and
idiosyncratic semantics [Pennarun 2016]; for instance, NTFS provides transactional
isolation for accesses to the same file, but not for directory modifications, while a
Linux fcntl lock on a file is released when any file descriptor for that file is closed by
a process [fcn 2016]. The complex semantics are typically a reflection of a complex
implementation, which has to operate over high-level constructs such as files and
directories. In addition, composability is challenging if each storage system implements
isolation independently: for example, it is impossible to do a transaction over an NTFS
file and a Berkeley DB key-value pair.

Isolation is even harder when multiversion concurrency control is required. In many
cases, pessimistic concurrency control is slow and prone to liveness bugs; for example,
when locks are exposed to end applications directly or via a transactional interface,
the application could hang while holding a lock. Optimistic concurrency control [Kung

ACM Transactions on Storage, Vol. 13, No. 1, Article 4, Publication date: February 2017.

Isotope: ACID Transactions for Block Storage 4:5

Fig. 1. The Isotope API.

and Robinson 1981] works well in this case, ensuring that other transactions can pro-
ceed without waiting for the hung process. Multiversion concurrency control works
even better, providing transactions with stable, consistent snapshots (a key property
for arbitrary applications that can crash if exposed to inconsistent snapshots [Guer-
raoui and Kapalka 2008]); allowing read-only transactions to always commit [Bernstein
et al. 1987]; and enabling weaker but performant isolation levels such as snapshot iso-
lation [Berenson et al. 1995].

However, switching to multiversion concurrency control can be difficult for storage
systems due to its inherent need for multiversion state. High-level storage systems are
not always intrinsically multiversioned (with notable exceptions such as WAFL [Hitz
et al. 1994] and other copy-on-write file systems), making it difficult for developers to
switch from pessimistic locking to a multiversion concurrency control scheme. Multi-
versioning can be particularly difficult to implement for complex data structures used
by storage systems such as B-trees, requiring mechanisms such as tombstones [Driscoll
et al. 1986; Reid et al. 2011].

In contrast, multiversioning is relatively easy to implement over the static address
space provided by a block store (e.g., no tombstones are required since addresses can
never be “deleted”). Additionally, many block stores are already multiversioned in order
to obtain write sequentiality: examples include log-structured disk stores, shingled
hard drives [Aghayev and Desnoyers 2015], and SSDs.

3. THE ISOTOPE API

The basic Isotope API is shown in Figure 1: applications can use standard POSIX
calls to issue reads and writes to 4KB blocks, bookended by beginTX/endTX calls. The
beginTX call establishes a snapshot; all reads within the transaction are served from
that snapshot. Writes within the transaction are speculative. Each transaction can
view its own writes, but the writes are not made visible to other concurrent transac-
tions until the transaction commits. The endTX call returns true if the transaction
commits, and false otherwise. The abortTX allows the application to explicitly abort
the transaction. The application can choose one of two isolation semantics on startup:
strict serializability or snapshot isolation.

The Isotope API implicitly associates transaction IDs with user-space threads, in-
stead of augmenting each call signature in the API with an explicit transaction ID that
the application supplies. We took this route to allow applications to use the existing,
highly optimized POSIX calls to read and write data to the block store. The control

ACM Transactions on Storage, Vol. 13, No. 1, Article 4, Publication date: February 2017.

4:6 J.-Y. Shin et al.

Fig. 2. Example application: setattr code for a file system built over Isotope.

API for starting, committing, and aborting transactions is implemented via IOCTLs.
To allow transactions to execute across different threads or processes, Isotope provides
additional APIs via IOCTLs: releaseTX disconnects the association between the current
thread and the transaction and returns a temporary transaction handle. A different
thread can call takeoverTX with this handle to associate itself with the transaction.

Isotope exposes two other optional calls via IOCTLs. After reading or writing a 4KB
block within a transaction, applications can call mark_accessed to explicitly specify the
accessed byte range within the block. This information is key for fine-grained conflict
detection; for example, a file system might mark a single inode within an inode block
or a single byte within a data allocation bitmap. Note that this information cannot
be inferred implicitly by comparing the old and new values of the 4KB block; the
application might have overwritten parts of the block without changing any bits. The
second optional call is please_cache, which lets the application request Isotope to cache
specific blocks in RAM; we discuss this call in detail later in the article. Figure 2 shows
a snippet of application code that uses the Isotope API (the setattr function from a file
system).

If a read or write is issued outside a transaction, it is treated as a singleton transac-
tion. In effect, Isotope behaves like a conventional block device if the reads and writes
issued to it are all nontransactional. In addition, Isotope can preemptively abort trans-
actions to avoid buggy or malicious applications from hoarding resources within the
storage subsystem. When a transaction is preemptively aborted, any reads, writes,
or control calls issued within it will return error codes, except for endTX, which will
return false, and abortTX.

Transactions can be nested (i.e., a beginTX/endTX pair can have other pairs nested
within it) with the simple semantics that the internal transactions are ignored. A
nested beginTX does not establish a new snapshot, and a nested endTX always suc-
ceeds without changing the persistent state of the system. A nested abortTX causes
any further activity in the transaction to return error codes until all the enclosing
abortTX/endTX have been called. This behavior is important for allowing storage

ACM Transactions on Storage, Vol. 13, No. 1, Article 4, Publication date: February 2017.

Isotope: ACID Transactions for Block Storage 4:7

systems to expose transactions to end-user applications. In the example of the file sys-
tem, if an end-user application invokes beginTX (either directly on Isotope or through a
file-system-provided API) before calling the setattr function in Figure 2 multiple times,
the internal transactions within each setattr call are ignored and the entire ensemble
of operations will commit or abort.

3.1. Composability

As stated earlier, a primary benefit of a transactional block store is its obliviousness
to the structure of the software stack running above it, which can range from a single-
threaded application to a composition of multithreaded application code, library storage
systems, out-of-process daemons, and kernel modules. The Isotope API is designed
to allow block-level transactions to span arbitrary compositions of different types of
software modules. We describe some of these composition patterns in the context of
a simple photo storage application called ImgStore, which stores photos and their
associated metadata in a key-value store.

In the simplest case, ImgStore can store images and various kinds of metadata as
key-value pairs in IsoHT, which in turn is built over an Isotope volume using trans-
actions. Here, a single transaction-oblivious application (ImgStore) runs over a single
transaction-aware library-based key-value storage system (IsoHT).

Cross-layer: ImgStore may want to atomically update multiple key-value pairs in
IsoHT; for example, when a user is tagged in a photo, ImgStore may want to update a
photo-to-user mapping as well as a user-to-photo mapping, stored under two different
keys. To do so, ImgStore can encapsulate calls to IsoHT within Isotope beginTX/endTX
calls, leveraging nested transactions.

Cross-thread: In the simplest case, ImgStore executes each transaction within a
single thread. However, if ImgStore is built using an event-driven library that requires
transactions to execute across different threads, it can use the releaseTX/takeoverTX
calls.

Cross-library: ImgStore may find that IsoHT works well for certain kinds of accesses
(e.g., retrieving a specific image), but not for others such as range queries (e.g., finding
photos taken between March 4 and May 10, 2015). Accordingly, it may want to spread
its state across two different library key-value stores, one based on a hash table (IsoHT)
and another on a B-tree (IsoBT), for efficient range queries. When a photo is added to the
system, ImgStore can transactionally call put operations on both stores. This requires
the key-value stores to run over different partitions on the same Isotope volume.

Cross-process: For various reasons, ImgStore may want to run IsoHT in a separate
process and access it via an IPC mechanism: for example, to share it with other ap-
plications on the same machine or to isolate failures in different code bases. To do so,
ImgStore has to call releaseTX and pass the returned transaction handle via IPC to
IsoHT, which then calls takeoverTX. This requires IsoHT to expose a transaction-aware
IPC interface for calls that occur within a transactional context.

4. DESIGN AND IMPLEMENTATION

Figure 3 shows the major components of the Isotope design. Isotope internally imple-
ments an in-memory multiversion index (B in the figure) over a persistent log (E).
Versioning is provided by a timestamp counter (A), which determines the snapshot
seen by a transaction as well as its commit timestamp. This commit timestamp is used
by a decision algorithm (D) to determine if the transaction commits or not. Writes
issued within a transaction are buffered (C) during its execution and flushed to the log
if the transaction commits. We now describe the interaction of these components.

ACM Transactions on Storage, Vol. 13, No. 1, Article 4, Publication date: February 2017.

4:8 J.-Y. Shin et al.

Fig. 3. Isotope consists of (A) a timestamp counter, (B) a multiversion index, (C) a write buffer, (D) a decision
algorithm, and (E) a persistent log.

When the application calls beginTX, Isotope creates an in-memory intention record
for the speculative transaction: a simple data structure with a start timestamp and a
read/write-set. Each entry in the read/write-set consists of a block address, a bitmap
that tracks the accessed status of smaller fixed-size chunks or fragments within the
block (by default, the fragment size is 16 bytes, resulting in a 256-bit bitmap for each
4KB block), and an additional 4KB payload only in the write-set. These bitmaps are
never written persistently and are only maintained in-memory for currently execut-
ing transactions. After creating the intention record, the beginTX call sets its start
timestamp to the current value of the timestamp counter (A in Figure 3) without
incrementing it.

Until endTX is called, the transaction executes speculatively against the (potentially
stale) snapshot, without any effect on the shared or persistent state of the system.
Writes update the write-set and are buffered in-memory (C in Figure 3) without issuing
any I/O. A transaction can read its own buffered writes, but all other reads within the
transaction are served from the snapshot corresponding to the start timestamp using
the multiversion index (B in Figure 3). The mark_accessed call modifies the bitmap
for a previously read or written block to indicate which bits the application actually
touched. Multiple mark_accessed calls have a cumulative effect on the bitmap. At any
point, the transaction can be preemptively aborted by Isotope simply by discarding its
intention record and buffered writes. Subsequent reads, writes, and endTX calls will
be unable to find the record and return an error code to the application.

All the action happens on the endTX call, which consists of two distinct phases:
deciding the commit/abort status of the transaction and applying the transaction (if
it commits) to the state of the logical address space. Regardless of how it performs
these two phases, the first action taken by endTX is to assign the transaction a commit
timestamp by reading and incrementing the global counter. The commit timestamp of
the transaction is used to make the commit decision and is also used as the version
number for all the writes within the transaction if it commits. We use the terms
“timestamp” and “version number” interchangeably in the following text.

4.1. Deciding Transactions

To determine whether the transaction commits or aborts, endTX must detect the exis-
tence of conflicting transactions. The isolation guarantee provided—strict serializabil-
ity or snapshot isolation—depends on what constitutes a conflicting transaction. We

ACM Transactions on Storage, Vol. 13, No. 1, Article 4, Publication date: February 2017.

Isotope: ACID Transactions for Block Storage 4:9

Fig. 4. Conflict detection under snapshot isolation: a transaction commits if no other committed transaction
in its conflict window has an overlapping write-set.

first consider a simple strawman scheme that provides strict serializability and im-
plements conflict detection as a function of the multiversion index. Here, transactions
are processed in commit timestamp order, and for each transaction the multiversion
index is consulted to check if any of the logical blocks in its read-set has a version
number greater than the current transaction’s start timestamp. In other words, we
check whether any of the blocks read by the transaction has been updated since it was
read.

This scheme is simple but suffers from a major drawback: the granularity of the
multiversion index has to match the granularity of conflict detection. For example, if
we want to check for conflicts at 16-byte grain, the index has to track version numbers at
16-byte grain as well; this blows up the size of the in-memory index by 256× compared
to a conventional block-granular index. As a result, this scheme is not well suited for
fine-grained conflict detection.

To perform fine-grained conflict detection while avoiding this blow-up in the size of
the index, Isotope instead implements conflict detection as a function over the temporal
stream of prior transactions (see Figure 4). Concretely, each transaction has a conflict
window of prior transactions between its start timestamp and its commit timestamp.

—For strict serializability, the transaction T aborts if any committed transaction in its
conflict window modified an address that T read; otherwise, T commits.

—For snapshot isolation, the transaction T aborts if any committed transaction in its
conflict window modified an address that T wrote; otherwise, T commits.

In either case, the commit/abort status of a transaction is a function of a window of
transactions immediately preceding it in commit timestamp order.

When endTX is called on T , a pointer to its intention record is inserted into the
slot corresponding to its commit timestamp in an in-memory array. Since the counter
assigns contiguous timestamps, this array has no holes; each slot is eventually occupied
by a transaction. At this point, we do not yet know the commit/abort status of T and
have not issued any write I/O, but we have a start timestamp and a commit timestamp
for it. Each slot is guarded by its own lock.

To decide if T commits or aborts, we simply look at its conflict window of trans-
actions in the in-memory array (i.e., the transactions between its start and commit
timestamps). We can decide T ’s status once all these transactions have decided. T
commits if each transaction in the window either aborts or has no overlap between its

ACM Transactions on Storage, Vol. 13, No. 1, Article 4, Publication date: February 2017.

4:10 J.-Y. Shin et al.

read/write-set and T ’s read/write-set (depending on the transactional semantics). Since
each read/write-set stores fine-grained information about which fragments of the block
are accessed, this scheme provides fine-grained conflict detection without increasing
the size of the multiversion index.

Defining the commit/abort decision for a transaction as a function of other transac-
tions is a strategy as old as optimistic concurrency control itself [Kung and Robinson
1981], but choosing an appropriate implementation is nontrivial. Like us, Reid et al.
[2011] formulate the commit/abort decision for distributed transactions in the Hyder
system as a function of a conflict window over a totally ordered stream of transaction
intentions. Unlike us, they explicitly make a choice to use the spatial state of the sys-
tem (i.e., the index) to decide transactions. A number of factors drive our choice in the
opposite direction: we need to support writes at arbitrary granularity (e.g., an inode)
without increasing index size; our intention log is a local in-memory array and not
distributed or shared across the network, drastically reducing the size of the conflict
window; and checking for conflicts using read/write-sets is easy since our index is a
simple address space.

4.2. Applying Transactions

If the outcome of the decision phase is commit, endTX proceeds to apply the transaction
to the logical address space. The first step in this process is to append the writes within
the transaction to the persistent log. This step can be executed in parallel for multiple
transactions, as soon as each one’s decision is known, since the existence and order of
writes on the log signify nothing: the multiversion index still points to older entries in
the log. The second step involves changing the multiversion index to point to the new
entries. Once the index has been changed, the transaction can be acknowledged and
its effects are visible.

One complication is that this protocol introduces a lost update anomaly. Consider a
transaction that reads a block (say, an allocation bitmap in a file system), examines and
changes the first bit, and writes it back. A second transaction reads the same block con-
currently, examines and changes the last bit, and writes it back. Our conflict detection
scheme will correctly allow both transactions to commit. However, each transaction
will write its own version of the 4KB bitmap, omitting the other’s modification; as a
result, the transaction with the higher timestamp will destroy the earlier transaction’s
modification. To avoid such lost updates, the endTX call performs an additional step
for each transaction before appending its buffered writes to the log. Once it knows that
the current transaction can commit, it scans the conflict window and merges updates
made by prior committed transactions to the blocks in its write-set.

4.3. Implementation Details

Isotope is implemented as an in-kernel software module in Linux 2.6.38, specifically, as
a device mapper that exposes multiple physical block devices as a single virtual disk,
at the same level of the stack as software RAID. Next, we discuss the details of this
implementation.

Log implementation: Isotope implements the log (i.e., E in Figure 3) over a con-
ventional address space with a counter marking the tail (and additional bookkeeping
information for garbage collection, which we discuss shortly). From a correctness and
functionality standpoint, Isotope is agnostic to how this address space is realized. For
good performance, it requires an implementation that works well for a logging work-
load where writes are concentrated at the tail, while reads and garbage collection
can occur at random locations in the body. A naive solution is to use a single physi-
cal disk (or a RAID-0 or RAID-10 array of disks), but garbage collection activity can

ACM Transactions on Storage, Vol. 13, No. 1, Article 4, Publication date: February 2017.

Isotope: ACID Transactions for Block Storage 4:11

hurt performance significantly by randomizing the disk arm. Replacing the disks with
SSDs increases the cost-to-capacity ratio of the array without entirely eliminating the
performance problem [Skourtis et al. 2014].

As a result, we use a design where a log is chained across multiple disks or SSDs
(similar to Gecko [Shin et al. 2013]). Chaining the log across drives ensures that garbage
collection—which occurs in the body of the log/chain—is separated from the first-class
writes arriving at the tail drive of the log/chain. In addition, a commodity SSD is used
as a read cache with an affinity for the tail drive of the chain, preventing application
reads from disrupting write sequentiality at the tail drive. In essence, this design
“collars” the throughput of the log, pegging write throughput to the speed of a single
drive, but simultaneously eliminating the throughput troughs caused by concurrent
garbage collection and read activity.

Garbage collection (GC): Compared to conventional log-structured stores, GC is
slightly complicated in Isotope by the need to maintain older versions of blocks. Iso-
tope tracks the oldest start timestamp across all ongoing transactions and makes a
best-effort attempt to not garbage collect versions newer than this timestamp. In the
worst case, any noncurrent versions can be discarded without compromising safety,
by first preemptively aborting any transactions reading from them. The application
can simply retry its transactions, obtaining a new, current snapshot. This behavior is
particularly useful for dealing with the effects of rogue transactions that are never
terminated by the application. The alternative, which we did not implement, is to set
a flag that preserves a running transaction’s snapshot by blocking new writes if the
log runs out of space; this may be required if it’s more important for a long-running
transaction to finish (e.g., if it’s a critical backup) than for the system to be online for
writes.

Caching: The please_cache call in Isotope allows the application to mark the blocks
it wants cached in RAM. To implement caching, Isotope annotates the multiversion
index with pointers to cached copies of block versions. This call is merely a hint and
provides no guarantees to the application. In practice, our implementation uses a
simple LRU scheme to cache a subset of the blocks if the application requests caching
indiscriminately.

Index persistence: Thus far, we have described the multiversion index as an in-
memory data structure pointing to entries on the log. Changes to the index have to be
made persistent so that the state of the system can be reconstructed on failures. To
obtain persistence and failure atomicity for these changes, we use a metadata log. The
size of this log can be limited via periodic checkpoints.

A simple option is to store the metadata log on battery-backed RAM or on newer
technologies such as PCM or flash-backed RAM (e.g., Fusion-io’s AutoCommit Mem-
ory [SanDisk 2015b]). In the absence of special hardware on our experimental testbed,
we instead used a commodity SSD. Each transaction’s description in the metadata log
is quite compact (i.e., the logical block address and the physical log position of each
write in it, and its commit timestamp). To avoid the slowdown and flash wear-out in-
duced by logging each transaction separately as a synchronous page write, we batch
multiple committed transactions together [DeWitt et al. 1984], delaying the final step
of modifying the multiversion index and acknowledging the transaction to the applica-
tion. We do not turn off the write cache on the SSD, relying on its ability to flush and
persist data on power failures using supercapacitors.

Memory overhead: A primary source of memory overhead in Isotope is the multiver-
sion index. A single-version index that maps a 2TB logical address space to an 4TB
physical address space can be implemented as a simple array that requires 2GB of

ACM Transactions on Storage, Vol. 13, No. 1, Article 4, Publication date: February 2017.

4:12 J.-Y. Shin et al.

RAM (i.e., half a billion 4-byte entries), which can be easily maintained in RAM on
modern machines. Associating each address with a version (without supporting access
to prior versions) doubles the space requirement to 4GB (assuming 4-byte timestamps),
which is still feasible. However, multiversioned indices that allow access to past ver-
sions are more expensive, because multiple versions need to be stored, and because
a more complex data structure is required instead of an array with fixed-size values.
These concerns are mitigated by the fact that Isotope is not designed to be a fully
fledged multiversion store; it only stores versions from the recent past, corresponding
to the snapshots seen by executing transactions.

Accordingly, Isotope maintains a pair of indices: a single-version index in the form
of a simple array and a multiversion index implemented as a hash table. Each entry
in the single-version index contains either a valid physical address if the block has
only one valid, non-GC’ed version; a null value if the block has never been written; or
a constant indicating the existence of multiple versions. If a transaction issues a read
and encounters this constant, the multiversion index is consulted. An address is moved
from the single-version index to the multiversion index when it goes from having one
version to two; it is moved back to the single-version index when its older versions are
garbage collected (as described earlier in this section).

The multiversion index consists of a hash table that maps each logical address to
a linked list of its existing versions, in timestamp order. Each entry contains forward
and backward pointers, the logical address, the physical address, and the timestamp.
A transaction walks this linked list to find the entry with the highest timestamp less
than its snapshot timestamp. In addition, the entry also has a pointer to the in-memory
cached copy, as described earlier. If an address is cached, the first single-version index
is marked as having multiple versions even if it does not, forcing the transaction to
look at the hash table index and encounter the cached copy. In the future, we plan on
applying recent work on compact, concurrent maps [Fan et al. 2013] to further reduce
overhead.

Rogue transactions: Another source of memory overhead in Isotope is the buffering
of writes issued by in-progress transactions. Each write adds an entry to the write-set
of the transaction containing the 4KB payload and a 4K

C -bit bitmap, where C is the
granularity of conflict detection (e.g., with 16-byte detection, the bitmap is 256 bits).
Rogue transactions that issue a large number of writes are a concern, especially since
transactions can be exposed to end-user applications. To handle this, Isotope provides
a configuration parameter to set the maximum number of writes that can be issued by
a transaction (set to 256 by default); beyond this, writes return an error code. Another
parameter sets the maximum number of outstanding transactions a single process can
have in-flight (also set to 256 by default). Accordingly, the maximum memory a rogue
process can use within Isotope for buffered writes is roughly 256MB. When a process
is killed, its outstanding transactions are preemptively aborted.

Despite these safeguards, it is still possible for Isotope to run out of memory if many
processes are launched concurrently and each spams the system with rogue, never-
ending transactions. In the worst case, Isotope can always relieve memory pressure by
preemptively aborting transactions. Another option we considered is to flush writes to
disk before they are committed; since the metadata index does not point to them, they
won’t be visible to other transactions. Given that the system is only expected to run
out of memory in pathological cases where issuing I/O might worsen the situation, we
didn’t implement this scheme.

Note that the in-memory array that Isotope uses for conflict detection is not a major
source of memory overhead; pointers to transaction intention records are inserted into
this array in timestamp order only after the application calls endTX, at which point
it has relinquished control to Isotope and cannot prolong the transaction. As a result,

ACM Transactions on Storage, Vol. 13, No. 1, Article 4, Publication date: February 2017.

Isotope: ACID Transactions for Block Storage 4:13

Table I. Lines of Code for Isotope Storage Systems

Original Basic APIs Optional APIs
Application with Locks (Lines Modified) (Lines Added)

IsoHT 591 591 (15) 617 (26)
IsoBT 1,229 1,229 (12) 1,246 (17)
IsoFS 997 997 (19) 1,022 (25)

the lifetime of an entry in this array is short and limited to the duration of the endTX
call.

5. ISOTOPE APPLICATIONS

To illustrate the usability and performance of Isotope, we built four applications using
Isotope transactions: IsoHT, a key-value store built over a persistent hash table; IsoBT,
a key-value store built over a persistent B-tree; IsoFS, a user-space POSIX file system;
and ImgStore, an image storage service that stores images in IsoHT, and a secondary
index in IsoBT. These applications implement each call in their respective public APIs
by following a simple template that wraps the entire function in a single transaction,
with a retry loop in case the transaction aborts due to a conflict (see Figure 2).

5.1. Transactional Key-Value Stores

Library-based or “embedded” key-value stores (such as LevelDB or Berkeley DB) are
typically built over persistent, on-disk data structures. We built two key-value stores
called IsoHT and IsoBT, implemented over an on-disk hash table and B-tree data struc-
ture, respectively. Both key-value stores support basic put/get operations on key-value
pairs, while IsoBT additionally supports range queries. Each API call is implemented
via a single transaction of block reads and block writes to an Isotope volume.

We implemented IsoHT and IsoBT in three stages. First, we wrote code without
Isotope transactions, using a global lock to guard the entire hash table or B-tree. The
resulting key-value stores are functional but slow, since all accesses are serialized by
the single lock. Further, they do not provide failure atomicity: a crash in the middle of
an operation can violate data structure integrity.

In the second stage, we simply replaced the acquisitions/releases on the global lock
with Isotope beginTX/endTX/abortTX calls, without changing the overall number of
lines of code. With this change, the key-value stores provide both fine-grained concur-
rency control (at block granularity) and failure atomicity. Finally, we added optional
mark_accessed calls to obtain subblock concurrency control and please_cache calls to
cache the data structures (e.g., the nodes of the B-tree, but not the values pointed to
by them). Table I reports on the lines of code (LOC) counts at each stage for the two
key-value stores.

Overall, Isotope APIs are simple to integrate into an existing code basis, which
involved less than 50 LOC addition. Having direct support for transaction from block
devices and especially not having to write failover code made the application design
very simple.

5.2. Transactional File System

IsoFS is a simple user-level file system built over Isotope accessible via FUSE [fus
2016], comprising 1K lines of C code. Its on-disk layout consists of distinct regions for
storing inodes, data, and an allocation bitmap for each. Each inode has an indirect
pointer and a double indirect pointer, both of which point to pages allocated from
the data region. Each file system call (e.g., setattr, lookup, or unlink) uses a single
transaction to access and modify multiple blocks. The only functionality implemented

ACM Transactions on Storage, Vol. 13, No. 1, Article 4, Publication date: February 2017.

4:14 J.-Y. Shin et al.

by IsoFS is the mapping and allocation of files and directories to blocks; atomicity,
isolation, and durability are handled by Isotope.

IsoFS is stateless, caching neither data nor metadata across file system calls (i.e.,
across different transactions). Instead, IsoFS tells Isotope which blocks to cache in
RAM. This idiom turned out to be surprisingly easy to use in the context of a file
system; we ask Isotope to cache all bitmap blocks on startup, each inode block when an
inode within it is allocated, and each data block that’s allocated as an indirect or double
indirect block. Like the key-value stores, IsoFS was implemented in three stages and
required few extra lines of code to go from a global lock to using the Isotope API (see
Table I).

IsoFS trivially exposes transactions to end applications over files and directories.
For example, a user might create a directory, move a file into it, edit the file, and
rename the directory, only to abort the entire transaction and revert the file system to
its earlier state. One implementation-related caveat is that we were unable to expose
transactions to end applications of IsoFS via the FUSE interface, since FUSE decouples
application threading from file system threading and does not provide any facility for
explicitly transferring a transaction handle on each call. Accordingly, we can only
expose transactions to the end application if IsoFS is used directly as a library within
the application’s process.

5.3. Experience

Composability: As we stated earlier, Isotope-based storage systems are trivially com-
posable: a single transaction can encapsulate calls to IsoFS, IsoHT, and IsoBT. To
demonstrate the power of such composability, we built ImgStore, the image storage
application described in Section 3. ImgStore stores images in IsoHT, using 64-bit IDs
as keys. It then stores a secondary index in IsoBT, mapping dates to IDs. The imple-
mentation of ImgStore is trivially simple: to add an image, it creates a transaction to
put the image in IsoHT, and then updates the secondary index in IsoBT. The result is a
storage system that—in just 148 LOC—provides hash-table-like performance for gets
while supporting range queries.

Isolation levels: Isotope provides both strict serializability and snapshot isolation; our
expectation was that developers would find it difficult to deal with the semantics of the
latter. However, our experience with IsoFS, IsoHT, and IsoBT showed otherwise. Snap-
shot isolation provides better performance than strict serializability but introduces the
write skew anomaly [Berenson et al. 1995]: if two concurrent transactions read two
blocks and each updates one of the blocks (but not the same one), they will both commit
despite not being serializable in any order. The write skew anomaly is problematic
for applications if a transaction is expected to maintain an integrity constraint that
includes some block it does not write to (e.g., if the two blocks in the example have to
sum to less than some constant). In the case of the storage systems we built, we did
not encounter these kinds of constraints; for instance, no particular constraint holds
between different bits on an allocation map. As a result, we found it relatively easy to
reason about and rule out the write skew anomaly.

Randomization: Our initial implementations exhibited a high abort rate due to de-
terministic behavior across different transactions. For example, a simple algorithm for
allocating a free page involved getting the first free bit from the allocation bitmap; as a
result, multiple concurrent transactions interfered with each other by trying to allocate
the same page. To reduce the abort rate, it was sufficient to remove the determinism
in simple ways; for example, we assigned each thread a random start offset into the
allocation bitmap.

ACM Transactions on Storage, Vol. 13, No. 1, Article 4, Publication date: February 2017.

Isotope: ACID Transactions for Block Storage 4:15

6. PERFORMANCE EVALUATION

We evaluate Isotope on a machine with an Intel Xeon CPU with 24 hyperthreaded
cores, 24GB RAM, three 10K RPM disks of 600GB each, an 128GB SSD for the OS, and
two other 240GB SSDs with SATA interfaces. In the following experiments, we used
two primary configurations for Isotope’s persistent log: a three-disk chained logging
instance with a 32GB SSD read cache in front, and a two-SSD chained logging instance.
In some of the experiments, we compare against conventional systems running over
RAID-0 configurations of three disks and two SSDs, respectively. In the chained logging
configurations, all writes are logged to the single tail drive, while reads are mostly
served by the other drives (and the SSD read cache for the disk-based configuration).
The performance of this logging design under various workloads and during GC activity
has been documented in Shin et al. [2013]. In all our experiments, GC is running in the
background and issuing I/Os to the drives in the body of the chain to compact segments,
without disrupting the tail drive.

In this section, we first focus on the performance and overhead of Isotope, show-
ing that it exploits fine-grained concurrency in workloads and provides high, stable
throughput. Then we show that Isotope applications—in addition to being simple and
robust—are fast, efficient, and composable into larger applications.

6.1. Isotope Performance

To understand how Isotope performs depending on the concurrency present in the
workload, we implemented a synthetic benchmark. The benchmark executes a simple
type of transaction that reads three randomly chosen blocks, modifies a random 16-
byte segment within each block (aligned on a 16-byte boundary), and writes them back.
This benchmark performs identically with strict serializability and snapshot isolation,
since the read-set exactly matches the write-set.

In the following experiments, we executed 64 instances of the microbenchmark con-
currently, varying the size of the address space accessed by the instances to vary
contention. The blocks are chosen from a specific prefix of the address space, which is a
parameter to the benchmark; the longer this prefix is, the bigger the fraction of the ad-
dress space accessed by the benchmark, and the less skewed the workload. The two key
metrics of interest are transaction goodput (measured as the number of successfully
committed transactions per second, as well as the total number of bytes read or written
per second by these transactions) and overall transaction throughput; their ratio is the
commit rate of the system. Each data point in the following graphs is averaged across
three runs; in all cases, the minimum and the maximum run were within 10% of the
average.

Figure 5 shows the performance of this benchmark against Isotope without fine-
grained conflict detection; that is, the benchmark does not issue mark_accessed calls
for the 16-byte segments it modifies. On the x-axis, we increase the fraction of the
address space accessed by the benchmark. On the left y-axis, we plot the rate at
which data is read and written by transactions; on the right y-axis, we plot the num-
ber of transactions/second. On both disk and SSD, transactional contention cripples
performance on the left part of the graph: even though the benchmark attempts to
commit thousands of transactions/second, all of them access a small number of blocks,
leading to low goodput. Note that overall transaction throughput is very high when the
commit rate is low: aborts are cheap and do not result in storage I/O.

Conversely, disk contention hurts performance on the right side of Figure 5-Left: since
the blocks read by each transaction are distributed widely across the address space, the
32GB SSD read cache is ineffective in serving reads and the disk arm is randomized and
seeking constantly. As a result, the system provides very few transactions per second

ACM Transactions on Storage, Vol. 13, No. 1, Article 4, Publication date: February 2017.

4:16 J.-Y. Shin et al.

Fig. 5. Without fine-grained conflict detection, Isotope performs well under low contention.

Fig. 6. With fine-grained conflict detection, Isotope performs well even under high contention.

(though with a high commit rate). In the middle of the graph is a sweet spot where
Isotope saturates the disk at roughly 120MB/s of writes, where the blocks accessed are
concentrated enough for reads to be cacheable in the SSD (which supplies 120MB/s of
reads, or 30K 4KB IOPS), while distributed enough for writes to not trigger frequent
conflicts. However, Isotope running on top of SSDs, which are less affected by random
reads, constantly saturates the throughput (Figure 5-Right).

We can improve performance on the left side of the graphs in Figure 5 via fine-grained
conflict detection. In Figure 6, the benchmark issues mark_accessed calls to tell Isotope
which 16-byte fragment it is modifying. The result is high, stable goodput even when all
transactions are accessing a small number of blocks, since there is enough fragment-
level concurrency in the system to ensure a high commit rate. Isotope’s conflict detection
was not CPU intensive: we observed an average CPU utilization of 5.96% without fine-
grained conflict detection, and 6.17% with it.

Figure 7 shows the ability of Isotope to exploit different levels of fine-grained con-
currency in the workload by choosing an appropriate conflict detection granularity
smaller than a block size. We access a small, 32KB address space with the synthetic
benchmark and vary the size of the fragment updated by each transaction, as well as
the granularity of conflict detection. As the fragments become smaller on the x-axis,
goodput goes up due to more concurrency in the workload.

ACM Transactions on Storage, Vol. 13, No. 1, Article 4, Publication date: February 2017.

Isotope: ACID Transactions for Block Storage 4:17

Fig. 7. Isotope provides higher goodput as it detects conflicts at finer grain.

Fig. 8. Isotope scalability to larger disk arrays.

Finally, we evaluated Isotope’s scalability to larger arrays in Figure 8. For this exper-
iment, we changed the benchmark’s transactions to always read from a small address
space completely cached in RAM (using please_cache) and issued blind writes to ran-
dom locations in the entire address space; we did this to remove our SSD cache as a
read bottleneck. We then used a single RAID-0 volume of multiple drives as the logging
chain’s tail drive. The figure only contains the performance measured from the block
device and not from the in-memory cache. As seen, throughput scales up to 500MB/s
with three to four disk drives or two SSD drives before plateauing; at this speed, the
SSD we use to log metadata updates becomes the bottleneck.

6.2. Key-Value Store Performance

As described earlier, we implemented two key-value stores over Isotope: IsoHT using
a hash table index and IsoBT using a B-tree index, respectively. IsoBT exposes a
fully functional LevelDB API to end applications; IsoHT does the same minus range
queries. To evaluate these systems, we used the LevelDB benchmark [Google 2016]
as well as the YCSB [Cooper et al. 2010] benchmark. We ran the fill-random, read-
random, and delete-random workloads of the LevelDB benchmark and YCSB workload-
A traces (50% reads and 50% updates following a zipf distribution on keys). All these
experiments are on the two-SSD configuration of Isotope. For comparison, we ran
LevelDB on a RAID-0 array of the two SSDs, in both synchronous mode (“LvlDB-s”)

ACM Transactions on Storage, Vol. 13, No. 1, Article 4, Publication date: February 2017.

4:18 J.-Y. Shin et al.

Fig. 9. IsoHT and IsoBT outperform LevelDB for data operations while providing stronger consistency
guarantees.

and asynchronous mode (“LvlDB”). LevelDB was set to use no compression and the
default write cache size of 8MB. For all the workloads, we used a value size of 8KB and
varied the number of threads issuing requests from four to 128. Results with different
value sizes (from 4KB to 32KB) showed similar trends.

For operations involving writes (Figures 9(a), 9(c), and 9(d)), IsoHT and IsoBT good-
put increases with the number of threads but dips slightly beyond 64 threads due to
an increased transaction conflict rate. For the read workload (Figure 9(b)), throughput
increases until the underlying SSDs are saturated. Overall, IsoHT has higher goodput
than IsoBT, since it touches fewer metadata blocks per operation. We ran these exper-
iments with Isotope providing snapshot isolation, since it performed better for certain
workloads and gave sufficiently strong semantics for building the key-value stores. We
compare strict serializability and snapshot isolation in the next subsection.

LevelDB’s performance is low for fill operations due to sorting and multilevel merging
(Figure 9(a)), and its read performance degrades as the number of concurrent threads
increases because of the CPU contention in the skip list, cache thrashing, and internal
merging operations (Figure 9(b)). Still, LevelDB’s delete is very efficient because it only
involves appending a small delete intention record to a log, whereas IsoBT/IsoHT has
to update a full 4KB block per delete (Figure 9(c)).

The point of this experiment is not to show that IsoHT/IsoBT is better than LevelDB,
which has a different internal design and is optimized for specific workloads such as
sequential reads and bulk writes. Rather, it shows that systems built over Isotope with

ACM Transactions on Storage, Vol. 13, No. 1, Article 4, Publication date: February 2017.

Isotope: ACID Transactions for Block Storage 4:19

Fig. 10. Goodput and commit rate of IsoBT using snapshot isolation and strict serializability.

little effort can provide equivalent or better performance than an existing system that
implements its own concurrency control and failure atomicity logic.

6.3. Snapshot Isolation Versus Strict Serializability

Isotope supports snapshot isolation and strict serializability. Using one or the other
does not incur extra overhead, because the only difference between the two is whether
to check write-write or read-write conflicts among transactions. However, the trans-
action commit rate that applications observe varies depending on the semantics. Fig-
ure 10 shows the goodput and the transaction commit rate of IsoBT using the same
experimental setup as the previous key-value store experiments running over Isotope,
but using snapshot isolation (SI) and strict serializability (SS). The LevelDB bench-
mark with random-read is not used, because a workload without writes works the same
under both semantics. We only show the case of IsoBT because IsoHT and IsoFS have
inherently lower transactional conflict rates due to their different metadata structures.

The figure shows that snapshot isolation leads to better performance than strict seri-
alizability in general. The goodput measured from the two semantics does not diverge
when there is a small number of threads. However, when the concurrency increases,
strict serializability displays a lower commit rate and lower goodput compared to snap-
shot isolation. For the fill workload, snapshot isolation leads to 10% better performance
than strict serializability until 64 threads are used and 16% better when the number
of threads reaches 128. Delete operations show a higher variance of performance and
commit rate, because there are only metadata operations, where transactions are con-
centrated on a small number of metadata blocks with no data accesses. The YCSB
workload shows a small variance of goodput under low concurrency, but once the num-
ber of threads reaches 64 or above, small differences of commit rates lead to a relatively
large gap of goodput. The commit rate for YCSB is high overall, because 50% of requests
are reads, and the other 50%, which are writes, make the goodput vary.

This experiment shows the tradeoff between strong transactional semantics and
performance: if one needs stronger guarantees, performance needs to be sacrificed.
Isotope provides both strong and slightly weaker semantics depending on the user
needs. As snapshot isolation performs better and provides strong enough semantics to
maintain IsoBT, IsoHT, and IsoFS in a consistent state, we use snapshot isolation for
the rest of the evaluation.

ACM Transactions on Storage, Vol. 13, No. 1, Article 4, Publication date: February 2017.

4:20 J.-Y. Shin et al.

Fig. 11. ImgStore performance under different compositions of IsoBT and IsoHT.

6.4. Composability

To evaluate the composability of Isotope-based storage systems, we ran the same ex-
periment as the key-value store evaluation on ImgStore, our image storage applica-
tion built over IsoHT and IsoBT. In this experiment, ImgStore transactionally stores
a 16KB payload (corresponding to an image) in IsoHT and a small date-to-ID map-
ping in IsoBT. To capture the various ways in which Isotope storage systems can be
composed (see Section 3), we implemented several versions of ImgStore: cross-library,
where ImgStore accesses the two key-value stores as in-process libraries, with each
transaction executing within a single user-space thread; cross-thread, where ImgStore
accesses each key-value store using a separate thread and requires transactions to
execute across them; and cross-process, where each key-value store executes within its
own process and is accessed by ImgStore via socket-based IPC. Figure 11 shows the
resulting performance for all three versions.

The performance trend observed in each workload in the figure is similar to the
IsoHT and IsoBT; the performance increases as the number of concurrent threads
increases and plateaus or decreases after a certain level of concurrency is reached.
ImgStore exhibits less concurrency and goodput than IsoHT or IsoBT (peaking at 16
to 32 threads), since each composite transaction conflicts if either of its constituent
transactions in underlying IsoHT or IsoBT conflict.

The comparison between cross-library and cross-thread shows that the cost of the
extra takeoverTX/releaseTX calls required for cross-thread transactions is negligible.

ACM Transactions on Storage, Vol. 13, No. 1, Article 4, Publication date: February 2017.

Isotope: ACID Transactions for Block Storage 4:21

Fig. 12. IOZone over IsoFS and ext2/ext3.

For all benchmarks, cross-process transactions are the slowest due to the extra IPC
overhead.

6.5. File System Performance

Next, we compare the end-to-end performance of IsoFS running over Isotope using
the IOZone [IOzone 2016] write/rewrite benchmark with eight threads. Each thread
writes to its own file using a 16KB record size until the file size reaches 256MB; it
then rewrites the entire file sequentially and then rewrites it randomly. We ran this
workload against IsoFS running over Isotope, which converted each 16KB write into a
transaction involving four 4KB Isotope writes, along with metadata writes. We also ran
ext2 and ext3 over Isotope; these issued solitary, nontransactional reads and writes,
which were interpreted by Isotope as singleton transactions (in effect, Isotope operated
as a conventional log-structured block store, so that ext2 and ext3 are not penalized
for random I/Os). We ran ext3 in “ordered” mode, where metadata is journaled but file
contents are not.

Figure 12 plots the throughput observed by IOZone: on disk, IsoFS matches or
slightly outperforms ext2 and ext3, saturating the tail disk on the chain. On SSD,
IsoFS is faster than ext2 and ext3 for initial writes, but is bottlenecked by FUSE on
rewrites. When we ran IsoFS directly using a user-space benchmark that mimics IO-
Zone (“IsoFS-lib”), throughput improved to over 415MB/s. A secondary point made by
this graph is that Isotope does not slow down applications that do not use its transac-
tional features (the high performance is mainly due to the underlying logging scheme,
but ext2 and ext3 still saturate disk and SSD for rewrites), satisfying a key condition
for pushing functionality down the stack [Saltzer et al. 1984].

7. RELATED WORK

The idea of transactional atomicity for multiblock writes was first proposed in
Mime [Chao et al. 1992], a log-structured storage system that provided atomic mul-
tisector writes. Over the years, multiple other projects have proposed block-level or
page-level atomicity: the Logical Disk [De Jonge et al. 1993] in 1993, Stasis [Sears and
Brewer 2006] in 2006, TxFlash [Prabhakaran et al. 2008] in 2008, and MARS [Coburn
et al. 2013] in 2013. RVM [Satyanarayanan et al. 1994] and Rio Vista [Lowell and Chen
1997] proposed atomicity over a persistent memory abstraction. All these systems ex-
plicitly stopped short of providing full transactional semantics, relying on higher layers
to implement isolation. To the best of our knowledge, no existing single-machine system

ACM Transactions on Storage, Vol. 13, No. 1, Article 4, Publication date: February 2017.

4:22 J.-Y. Shin et al.

has implemented transactional isolation at the block level, or indeed any concurrency
control guarantee beyond linearizability.

On the other hand, distributed file systems have often relied on the underlying
storage layer to provide concurrency control. Boxwood [MacCormick et al. 2004], Sinfo-
nia [Aguilera et al. 2007], and CalvinFS [Thomson and Abadi 2015] presented simple
NFS designs that leveraged transactions over distributed implementations of high-
level data structures and a shared address space. Transaction isolation has been
proposed for shared block storage accessed over a network [Amiri et al. 2000] and
for key-value stores [Sovran et al. 2011]. Isotope can be viewed as an extension of
similar ideas to single-machine, multicore systems that does not require consensus or
distributed rollback protocols. Our single-machine IsoFS implementation has much in
common with the Boxwood, Sinfonia, and CalvinFS NFS implementations that ran
against clusters of storage servers.

Isotope also fits into a larger body of work on smart single-machine block devices,
starting with Loge [English and Stepanov 1992] and including HP AutoRAID [Wilkes
et al. 1996]. Some of this work has focused on making block devices smarter without
changing the interface [Sivathanu et al. 2003], while other work has looked at
augmenting the block interface [Chao et al. 1992; Wang et al. 1998; Ganger 2001],
modifying it [Zhang et al. 2012], and even replacing it with an object-based interface
[Mesnier et al. 2003]. In a distributed context, Parallax [Meyer et al. 2008] and Strata
[Cully et al. 2014] provide virtual disks on storage clusters. A number of file systems
are multiversion, starting with WAFL [Hitz et al. 1994], and including many others
[Santry et al. 1999; Muniswamy-Reddy et al. 2004; Cornell et al. 2004]. Underlying
these systems is research on multiversion data structures [Driscoll et al. 1986]. Less
common are multiversion block stores such as Clotho [Flouris and Bilas 2004] and
Venti [Quinlan and Dorward 2002].

A number of file systems have been built over a full-fledged database. Inversion
[Olson 1993] is a conventional file system built over the POSTGRES database, while
Amino [Wright et al. 2007] is a transactional file system (i.e., exposing transactions
to users) built over Berkeley DB. WinFS [Microsoft 2016b] was built over a relational
engine derived from the SQL Server. This route requires storage system developers
to adopt a complex interface—one that does not match or expose the underlying
grain of the hardware—in order to obtain benefits such as isolation and atomicity. In
contrast, Isotope retains the simple block storage interface while providing isolation
and atomicity.

TxOS [Porter et al. 2009] is a transactional operating system that provides ACID se-
mantics over syscalls including file accesses. In contrast, Isotope is largely OS agnostic
and can be ported easily to commodity operating systems, or even implemented under
the OS as a hardware device. In addition, Isotope supports the easy creation of new
systems such as key-value stores and file systems that run directly over block storage.

Isotope is also related to the large body of work on software transactional memory
(STM) [Shavit and Touitou 1997; Harris et al. 2010] systems, which typically provide
isolation but not durability or atomicity. Recent work has leveraged new NVRAM
technologies to add durability to the STM abstraction: Mnemosyne [Volos et al. 2011]
and NV-Heaps [Coburn et al. 2011] with PCM and Hathi [Saxena et al. 2012a] with
commodity SSDs. In contrast, Isotope aims for transactional secondary storage, rather
than transactional main memory.

8. CONCLUSION

We described Isotope, a transactional block store that provides isolation in addition
to atomicity and durability. We showed that isolation can be implemented efficiently
within the block layer, leveraging the inherent multiversioning of log-structured block

ACM Transactions on Storage, Vol. 13, No. 1, Article 4, Publication date: February 2017.

Isotope: ACID Transactions for Block Storage 4:23

stores and application-provided hints for fine-grained conflict detection. Isotope-based
systems are simple and fast, while obtaining database-strength guarantees on failure
atomicity, durability, and consistency. They are also composable, allowing application-
initiated transactions to span multiple storage systems and different abstractions such
as files and key-value pairs.

AVAILABILITY

The code of Isotope is available at http://gecko.cs.cornell.edu.

REFERENCES

Abutalib Aghayev and Peter Desnoyers. 2015. Skylight—a window on shingled disk operation. In USENIX
Conference on File and Storage Technologies (FAST’15). USENIX Association, 135–149.

Marcos K. Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and Christos Karamanolis. 2007. Sinfonia:
A new paradigm for building scalable distributed systems. ACM SIGOPS Operating Systems Review 41,
6 (2007), 159–174.

Khalil Amiri, Garth A. Gibson, and Richard Golding. 2000. Highly concurrent shared storage. In Interna-
tional Conference on Distributed Computing Systems. IEEE, 298–307.

Anirudh Badam and Vivek S. Pai. 2011. SSDAlloc: Hybrid SSD/RAM memory management made easy. In
USENIX Conference on Networked Systems Design and Implementation (NSDI’11). USENIX Associa-
tion, 211–224.

Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobber, Michael Wei, and John D. Davis.
2012. CORFU: A shared log design for flash clusters. In USENIX Conference on Networked Systems
Design and Implementation (NSDI’12). USENIX Association, 1–14.

Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil. 1995. A critique
of ANSI SQL isolation levels. ACM SIGMOD Record 24, 2 (1995), 1–10.

Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency Control and Recovery in
Database Systems. Vol. 370. Addison-Wesley, New York.

Chia Chao, Robert English, David Jacobson, Alexander Stepanov, and John Wilkes. 1992. Mime: A High
Performance Parallel Storage Device with Strong Recovery Guarantees. Technical Report. HPL-CSP-92-
9, Hewlett-Packard Laboratories.

Joel Coburn, Trevor Bunker, Meir Schwarz, Rajesh Gupta, and Steven Swanson. 2013. From ARIES to
MARS: Transaction support for next-generation, solid-state drives. In ACM Symposium on Operating
Systems Principles (SOSP’13). ACM, 197–212.

Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and Steven
Swanson. 2011. NV-Heaps: Making persistent objects fast and safe with next-generation, non-volatile
memories. ACM SIGARCH Computer Architecture News 39, 1 (2011), 105–118.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010. Bench-
marking cloud serving systems with YCSB. In ACM Symposium on Cloud Computing (SoCC’10). ACM,
143–154.

Brian Cornell, Peter A. Dinda, and Fabián E. Bustamante. 2004. Wayback: A user-level versioning file system
for Linux. In USENIX Annual Technical Conference (ATC’04). USENIX Association, 19–28.

Brendan Cully, Jake Wires, Dutch Meyer, Kevin Jamieson, Keir Fraser, Tim Deegan, Daniel Stodden,
Geoffrey Lefebvre, Daniel Ferstay, and Andrew Warfield. 2014. Strata: Scalable high-performance
storage on virtualized non-volatile memory. In USENIX Conference on File and Storage Technologies
(FAST’14). USENIX Association, 17–31.

Wiebren De Jonge, M. Frans Kaashoek, and Wilson C. Hsieh. 1993. The logical disk: A new approach to
improving file systems. ACM SIGOPS Operating Systems Review 27, 5 (1993), 15–28.

David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro, Michael R. Stonebraker, and David
A. Wood. 1984. Implementation techniques for main memory database systems. In ACM SIGMOD
International Conference on Management of Data. ACM, 1–8.

James R. Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert Endre Tarjan. 1986. Making data
structures persistent. In ACM Symposium on Theory of Computing (STOC’86). ACM, 109–121.

Robert M. English and Alexander A. Stepanov. 1992. Loge: A self-organizing disk controller. In USENIX
Winter Technical Conference. USENIX Association, 237–251.

Bin Fan, David G. Andersen, and Michael Kaminsky. 2013. MemC3: Compact and concurrent MemCache
with dumber caching and smarter hashing. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI’13). USENIX Association, 371–384.

ACM Transactions on Storage, Vol. 13, No. 1, Article 4, Publication date: February 2017.

http://gecko.cs.cornell.edu

4:24 J.-Y. Shin et al.

fcntl(2) Linux manual page. 2016. fcntl(2) Linux manual page. Retrieved from http://man7.org/linux/man-
pages/man2/fcntl.2.html.

Filesystem in Userspace. 2016. Retrieved from https://github.com/libfuse/libfuse.
Michail Flouris and Angelos Bilas. 2004. Clotho: Transparent data versioning at the block I/O level. In IEEE

Conference on Mass Storage Systems and Technologies (MSST’04). IEEE, 315–328.
Fusion-io. 2015. Fusion-io. Retrieved from http://www.fusionio.com.
Gregory R. Ganger. 2001. Blurring the Line Between OSes and Storage Devices. School of Computer Science,

Carnegie Mellon University.
Google. 2016. LevelDB benchmarks. Retrieved from https://github.com/google/leveldb/blob/master/doc/

benchmark.html.
Rachid Guerraoui and Michal Kapalka. 2008. On the correctness of transactional memory. In ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (PPoPP’08). ACM, 175–184.
Tim Harris, James Larus, and Ravi Rajwar. 2010. Transactional Memory. Morgan and Claypool Publishers.
Dave Hitz, James Lau, and Michael Malcolm. 1994. File system design for an NFS file server appliance. In

USENIX Winter Technical Conference. USENIX Association, 235–246.
IOzone. 2016. IOzone filesystem benchmark. Retrieved from http://www.iozone.org.
Jithin Jose, Mohammad Banikazemi, Wendy Belluomini, Chet Murthy, and Dhabaleswar K Panda. 2013.

MetaData persistence using storage class memory: Experiences with flash-backed DRAM. In Proceedings
of Workshop on Interactions of NVM/FLASH with Operating Systems and Workloads (INFLOW’13).
ACM, 3:1–3:7.

Hsiang-Tsung Kung and John T. Robinson. 1981. On optimistic methods for concurrency control. ACM
Transactions on Database Systems (TODS) 6, 2 (1981), 213–226.

David E. Lowell and Peter M. Chen. 1997. Free transactions with rio vista. ACM SIGOPS Operating Systems
Review 31, 5 (1997), 92–101.

John MacCormick, Nick Murphy, Marc Najork, Chandramohan A. Thekkath, and Lidong Zhou. 2004. Box-
wood: Abstractions as the foundation for storage infrastructure. In USENIX Symposium on Opearting
Systems Design and Implementation (OSDI’04). USENIX Association, 105–120.

Mike Mesnier, Gregory R. Ganger, and Erik Riedel. 2003. Object-based storage. IEEE Communications
Magazine 41, 8 (2003), 84–90.

Dutch T. Meyer, Gitika Aggarwal, Brendan Cully, Geoffrey Lefebvre, Michael J. Feeley, Norman C. Hutchin-
son, and Andrew Warfield. 2008. Parallax: Virtual disks for virtual machines. ACM SIGOPS Operating
Systems Review 42, 4 (2008), 41–54.

Microsoft. 2016a. Storage Spaces. Retrieved from http://technet.microsoft.com/en-us/library/hh831739.aspx.
Microsoft. 2016b. WinFS. Retrieved from http://blogs.msdn.com/b/winfs/.
C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. 1992. ARIES: A transaction

recovery method supporting fine-granularity locking and partial rollbacks using write-ahead logging.
ACM Transactions on Database Systems (TODS) 17, 1 (1992), 94–162.

Kiran-Kumar Muniswamy-Reddy, Charles P. Wright, Andrew Himmer, and Erez Zadok. 2004. A versatile and
user-oriented versioning file system. In USENIX Conference on File and Storage Technologies (FAST’04).
USENIX Association, 115–128.

Edmund B. Nightingale, Jeremy Elson, Jinliang Fan, Owen Hofmann, Jon Howell, and Yutaka Suzue. 2012.
Flat datacenter storage. In USENIX Symposium on Operating Systems Design and Implementation
(OSDI’12). USENIX Association, 1–15.

Michael A. Olson. 1993. The design and implementation of the inversion file system. In USENIX Winter
Technical Conference. USENIX Association, 205–218.

Avery Pennarun. 2016. Everything you never wanted to know about file locking. Retrieved from http://
apenwarr.ca/log/?m=201012#13.

Donald E. Porter, Owen S. Hofmann, Christopher J. Rossbach, Alexander Benn, and Emmett Witchel. 2009.
Operating system transactions. In ACM Symposium on Operating Systems Principles (SOSP’09). ACM,
161–176.

Vijayan Prabhakaran, Thomas L. Rodeheffer, and Lidong Zhou. 2008. Transactional flash. In USENIX
Symposium on Operating Systems Design and Implementation (OSDI’08). USENIX Association, 147–
160.

Sean Quinlan and Sean Dorward. 2002. Venti: A new approach to archival storage. In USENIX Conference
on File and Storage Technologies (FAST’02). USENIX Association, 89–101.

Colin Reid, Philip A. Bernstein, Ming Wu, and Xinhao Yuan. 2011. Optimistic concurrency control by melding
trees. Proceedings of the VLDB Endowment 4, 11 (2011).

ACM Transactions on Storage, Vol. 13, No. 1, Article 4, Publication date: February 2017.

http://man7.org/linux/man-pages/man2/fcntl.2.html
http://man7.org/linux/man-pages/man2/fcntl.2.html
https://github.com/libfuse/libfuse
file:www.fusionio.com
https://github.com/google/leveldb/blob/master/doc/benchmark.html
https://github.com/google/leveldb/blob/master/doc/benchmark.html
http://www.iozone.org
http://technet.microsoft.com/en-us/library/hh831739.aspx
http://blogs.msdn.com/b/winfs/
http://apenwarr.ca/log/?m=20101213
http://apenwarr.ca/log/?m=20101213

Isotope: ACID Transactions for Block Storage 4:25

Jerome H. Saltzer, David P. Reed, and David D. Clark. 1984. End-to-end arguments in system design. ACM
Transactions on Computer Systems (TOCS) 2, 4 (1984), 277–288.

SanDisk. 2015a. SanDisk Fusion-io Atomic Multi-Block Writes. Retrieved from http://www.sandisk.com/
assets/docs/accelerate-myql-open-source-databases-with-sandisk-nvmfs-and-fusion-iomemory-sx300-
application-accelerators.pdf.

SanDisk. 2015b. SanDisk Fusion-io Auto-Commit Memory. Retrieved from http://web.sandisk.com/assets/
white-papers/MySQL_High-Speed_Transaction_Logg ing.pdf.

Douglas S. Santry, Michael J. Feeley, Norman C. Hutchinson, Alistair C. Veitch, Ross W. Carton, and Jacob
Ofir. 1999. Deciding when to forget in the elephant file system. ACM SIGOPS Operating Systems Review
33, 5 (1999), 110–123.

Mahadev Satyanarayanan, Henry H. Mashburn, Puneet Kumar, David C. Steere, and James J. Kistler. 1994.
Lightweight recoverable virtual memory. ACM Transactions on Computer Systems (TOCS) 12, 1 (1994),
33–57.

Mohit Saxena, Mehul A. Shah, Stavros Harizopoulos, Michael M. Swift, and Arif Merchant. 2012a. Hathi:
Durable transactions for memory using flash. In International Workshop on Data Management on New
Hardware. ACM, 33–38.

Mohit Saxena, Michael M. Swift, and Yiying Zhang. 2012b. FlashTier: A lightweight, consistent and durable
storage cache. In ACM European Conference on Computer Systems (EuroSys’12). ACM, 267–280.

Seagate. 2016. Seagate Kinetic Open Storage Platform. Retrieved from http://www.seagate.com/solutions/
cloud/data-center-cloud/platforms/.

Russell Sears and Eric Brewer. 2006. Stasis: Flexible transactional storage. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI’06). USENIX Association, 29–44.

Nir Shavit and Dan Touitou. 1997. Software transactional memory. Distributed Computing 10, 2 (1997),
99–116.

Ji-Yong Shin, Mahesh Balakrishnan, Tudor Marian, and Hakim Weatherspoon. 2013. Gecko: Contention-
oblivious disk arrays for cloud storage. In USENIX Conference on File and Storage Technologies
(FAST’13). USENIX Association, 213–225.

Muthian Sivathanu, Vijayan Prabhakaran, Florentina I. Popovici, Timothy E. Denehy, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. 2003. Semantically-smart disk systems. In USENIX Conference
on File and Storage Technologies (FAST’03). USENIX Association, 73–88.

Dimitris Skourtis, Dimitris Achlioptas, Noah Watkins, Carlos Maltzahn, and Scott Brandt. 2014. Flash
on rails: Consistent flash performance through redundancy. In USENIX Annual Technical Conference
(ATC’14). USENIX Association, 463–474.

Gokul Soundararajan, Vijayan Prabhakaran, Mahesh Balakrishnan, and Ted Wobber. 2010. Extending
SSD lifetimes with disk-based write caches. In USENIX Conference on File and Storage Technologies
(FAST’10). USENIX Association, 101–114.

Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. 2011. Transactional storage for geo-
replicated systems. In ACM Symposium on Operating Systems Principles (SOSP’11). ACM, 385–400.

Lex Stein. 2005. Stupid file systems are better. In Workshop on Hot Topics in Operating Systems (HotOS’05).
USENIX Association.

Alexander Thomson and Daniel J. Abadi. 2015. CalvinFS: Consistent WAN replication and scalable metadata
management for distributed file systems. In USENIX Conference on File and Storage Technologies
(FAST’15). USENIX Association, 1–14.

Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: Lightweight persistent memory.
ACM SIGARCH Computer Architecture News 39, 1 (2011), 91–104.

Randolph Y. Wang, Thomas E. Anderson, and David A. Patterson. 1998. Virtual log based file systems for a
programmable disk. Operating Systems Review 33 (1998), 29–44.

John Wilkes, Richard Golding, Carl Staelin, and Tim Sullivan. 1996. The HP AutoRAID hierarchical storage
system. ACM Transactions on Computer Systems (TOCS) 14, 1 (1996), 108–136.

Charles P. Wright, Richard Spillane, Gopalan Sivathanu, and Erez Zadok. 2007. Extending ACID semantics
to the file system. ACM Transactions on Storage (TOS) 3, 2 (2007), 4.

Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2012. De-
indirection for flash-based SSDs with nameless writes. In USENIX Conference on File and Storage
Technologies (FAST’12). USENIX Association, 1–16.

Received September 2016; accepted December 2016

ACM Transactions on Storage, Vol. 13, No. 1, Article 4, Publication date: February 2017.

http://www.sandisk.com/assets/docs/accelerate-myql-open-source-databases-wit h-sandisk-nvmfs-and-fusion-iomemory-sx300-application-accelerators.pdf
http://www.sandisk.com/assets/docs/accelerate-myql-open-source-databases-wit h-sandisk-nvmfs-and-fusion-iomemory-sx300-application-accelerators.pdf
http://www.sandisk.com/assets/docs/accelerate-myql-open-source-databases-wit h-sandisk-nvmfs-and-fusion-iomemory-sx300-application-accelerators.pdf
http://web.sandisk.com/assets/white-papers/MySQLHigh-SpeedTransactionLogg ing.pdf
http://web.sandisk.com/assets/white-papers/MySQLHigh-SpeedTransactionLogg ing.pdf
http://www.seagate.com/solutions/cloud/data-center-cloud/platforms/
http://www.seagate.com/solutions/cloud/data-center-cloud/platforms/

